补偿器显示的功率因数与电能表的功率因数不一样
补偿器显示0.998 电能表显示0.781
100kva变压器 三个并联电容器 每个电容器额定电流是20安 容量是16千法
无功功率自动补偿器
答案:3 悬赏:30 手机版
解决时间 2021-02-19 15:26
- 提问者网友:捧腹剧
- 2021-02-19 09:44
最佳答案
- 五星知识达人网友:鱼芗
- 2021-02-19 09:55
无功补偿控制器的选择
随着电子技术的发展,先后出现了集成电路、CPU、DSP等技术构成的、各具特色的无功补偿控制器。随着无功补偿产品市场需求的逐步扩大,生产无功补偿控制器的厂家越来越多,产品质量和产品性能也千差万别。因此,在控制器的选择上要特别慎重,应严格按照DL/T-597《低压无功补偿控制器订货技术条件》、JB/T-9663《低压无功功率自动补偿控制器》等专业标准中规定的各项要求,依据具体的补偿需求和负荷特性,选择专业化厂家生产的合格控制器。一般情况下,可从以下几个方面对控制器进行选择:
1、 对于电网负荷波动不大,且三相负荷基本平衡,仅以提高功率因数为目标的情况,为了降低设备成本,可选用功能单一、操作简便的简易型无功补偿控制器。其控制物理量可不做严格要求,可采用无功功率、无功电流或功率因数作为控制物理量,也可采用复合型控制物理量。投切方式可采用较简单的循环投切模式。这样即能达到较好的无功补偿效果,又能降低设备的生产制造成本,同时设备操作简单,便于维护。比如:深圳奥特电器公司生产的GZK871系列。
2、 对于电网负荷波动频繁、最大负荷与最小负荷间的差距较大,但三相负荷基本平衡的情况,宜选用性能较好的控制器。例如选用无功电流或无功功率作为控制物理量,且投入门限和切除门限应能够分别设定,以防止出现投切震荡,同时还应具有过压和欠流等保护功能。投切方式最好采用可进行程序控制的“编码+循环”投切方式,以确保控制器能够快速准确地对无功功率的变化进行动态跟踪补偿。比如:深圳奥特电器公司生产的GZK872K、GZK900、GZK930等等系列。
3、 当电网负荷波动频繁,最大负荷与最小负荷差距较大,同时三相负荷严重不平衡时,对控制器的选择就提出了更高的要求,应具有“分相+平衡”复合投切功能。其控制物理量应为复合型(无功功率+功率因数
随着电子技术的发展,先后出现了集成电路、CPU、DSP等技术构成的、各具特色的无功补偿控制器。随着无功补偿产品市场需求的逐步扩大,生产无功补偿控制器的厂家越来越多,产品质量和产品性能也千差万别。因此,在控制器的选择上要特别慎重,应严格按照DL/T-597《低压无功补偿控制器订货技术条件》、JB/T-9663《低压无功功率自动补偿控制器》等专业标准中规定的各项要求,依据具体的补偿需求和负荷特性,选择专业化厂家生产的合格控制器。一般情况下,可从以下几个方面对控制器进行选择:
1、 对于电网负荷波动不大,且三相负荷基本平衡,仅以提高功率因数为目标的情况,为了降低设备成本,可选用功能单一、操作简便的简易型无功补偿控制器。其控制物理量可不做严格要求,可采用无功功率、无功电流或功率因数作为控制物理量,也可采用复合型控制物理量。投切方式可采用较简单的循环投切模式。这样即能达到较好的无功补偿效果,又能降低设备的生产制造成本,同时设备操作简单,便于维护。比如:深圳奥特电器公司生产的GZK871系列。
2、 对于电网负荷波动频繁、最大负荷与最小负荷间的差距较大,但三相负荷基本平衡的情况,宜选用性能较好的控制器。例如选用无功电流或无功功率作为控制物理量,且投入门限和切除门限应能够分别设定,以防止出现投切震荡,同时还应具有过压和欠流等保护功能。投切方式最好采用可进行程序控制的“编码+循环”投切方式,以确保控制器能够快速准确地对无功功率的变化进行动态跟踪补偿。比如:深圳奥特电器公司生产的GZK872K、GZK900、GZK930等等系列。
3、 当电网负荷波动频繁,最大负荷与最小负荷差距较大,同时三相负荷严重不平衡时,对控制器的选择就提出了更高的要求,应具有“分相+平衡”复合投切功能。其控制物理量应为复合型(无功功率+功率因数
全部回答
- 1楼网友:逃夭
- 2021-02-19 11:57
取样互感器的地方应该接在总屏的母线上!你检查你的线路是否有问题!
- 2楼网友:迷人又混蛋
- 2021-02-19 10:19
你是有的那种控制器,出现你这种现象很有可能是取样错误,或者电压相序错误。
功率因数的计算是根据电压的相位差来计算的,如果上面2个有一个是错误的话,那么测出来的功率因数就是错误的。
你这样的话是像系统倒送无功,如果不错的话你现在的负载应该大部分都是电灯和阻性负载吧。
建议检查控制器和控制器的接线取样,电压取样。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯