费马数的性质
答案:1 悬赏:10 手机版
解决时间 2021-03-26 17:02
- 提问者网友:那叫心脏的地方装的都是你
- 2021-03-25 23:48
费马数的性质
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-03-26 00:02
任意两个费马数都互质。
证明如下:设m>n, ,而 = = =……= ,所以 整除 。根据辗转相除的原理, ,所以任意两个费马数都互质。
费马数满足以下的递回关系:
其中n ≥ 2。这些等式都可以用数学归纳法推出。从最后一个等式中,我们可以推出哥德巴赫定理:任何两个费马数都没有大于1的公因子。要推出这个,我们需要假设 0 ≤ i < j 且 Fi 和 Fj 有一个公因子 a > 1。那么 a 能把和Fj都整除;则a能整除它们相减的差。因为a > 1,这使得a = 2。造成矛盾。因为所有的费马数显然是奇数。作为一个推论,我们得到素数个数无穷的又一个证明。
其他性质: Fn的位数D(n,b)可以表示成以b 为基数就是 (参见高斯函数). 除了F1 = 2 + 3以外没有费马数可以表示成两个素数的和。 当p是奇素数的时候,没有费马数可以表示成两个数的p次方相减的形式。 除了F0和F1,费马数的最后一位是7。 所有费马数(OEIS中的数列A051158)的倒数之和是无理数。
证明如下:设m>n, ,而 = = =……= ,所以 整除 。根据辗转相除的原理, ,所以任意两个费马数都互质。
费马数满足以下的递回关系:
其中n ≥ 2。这些等式都可以用数学归纳法推出。从最后一个等式中,我们可以推出哥德巴赫定理:任何两个费马数都没有大于1的公因子。要推出这个,我们需要假设 0 ≤ i < j 且 Fi 和 Fj 有一个公因子 a > 1。那么 a 能把和Fj都整除;则a能整除它们相减的差。因为a > 1,这使得a = 2。造成矛盾。因为所有的费马数显然是奇数。作为一个推论,我们得到素数个数无穷的又一个证明。
其他性质: Fn的位数D(n,b)可以表示成以b 为基数就是 (参见高斯函数). 除了F1 = 2 + 3以外没有费马数可以表示成两个素数的和。 当p是奇素数的时候,没有费马数可以表示成两个数的p次方相减的形式。 除了F0和F1,费马数的最后一位是7。 所有费马数(OEIS中的数列A051158)的倒数之和是无理数。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯