什么是整数
答案:4 悬赏:50 手机版
解决时间 2021-12-25 18:38
- 提问者网友:辞取
- 2021-12-25 00:19
什么是整数
最佳答案
- 五星知识达人网友:白昼之月
- 2021-12-25 01:50
整数(integers)就是像-3,-2,-1,0,1,2,3等这样的数。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。
正整数
它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
零
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
负整数
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a - b=c,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
奇偶
整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n为整数);奇数则可表示为2n+1(或2n-1)。
偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。
在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。
整除特征
1° 若一个数的末位是0、2、4、6或8,则这个数能被2整除。
2° 若一个数的数字和能被3整除,则这个整数能被3整除。
3° 若一个数的末尾两位数能被4整除,则这个数能被4整除。
4° 若一个数的末位是0或5,则这个数能被5整除。
5° 若一个数能被2和3整除,则这个数能被6整除。
6° 若一个数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
7° 若一个数的未尾三位数能被8整除,则这个数能被8整除。
8° 若一个数的数字和能被9整除,则这个整数能被9整除。
9° 若一个数的末位是0,则这个数能被10整除。
10° 若一个数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
11° 若一个数能被3和4整除,则这个数能被12整除。
12° 若一个数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,则重复「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
13° 若一个数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,同样重复之前的过程,直到能清楚判断为止。
14° 若一个数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,同样重复之前的计算思路,直到能清楚判断为止。
15° 若一个数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
16° 若一个数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
17° 若一个数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
奇偶性
1° 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为奇数,偶数个奇数的和、差为偶数;
2° 奇数的平方都可以表示成(8m+1)的形式,偶数的平方可以表示为8m或(8m+4)的形式;
3° 若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。
完全平方数
完全平方数及其性质
能表示为某整数的平方的数称为完全平方数,简称平方数。平方数有以下性质与结论:
(1)平方数的个位数字只可能是0,1,4,5,6,9;
(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;
(3)奇数平方的十位数字是偶数;
(4)十位数字是奇数的平方数的个位数一定是6;
(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;
(6)平方数的约数的个数为奇数;
(7)任何四个连续整数的乘积加1,必定是一个平方数。
(8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。
如果有帮助请采纳~来自团队“万能的笔亲”,回答成员“爱笔恋杰”
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。
正整数
它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
零
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
负整数
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a - b=c,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
奇偶
整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n为整数);奇数则可表示为2n+1(或2n-1)。
偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。
在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。
整除特征
1° 若一个数的末位是0、2、4、6或8,则这个数能被2整除。
2° 若一个数的数字和能被3整除,则这个整数能被3整除。
3° 若一个数的末尾两位数能被4整除,则这个数能被4整除。
4° 若一个数的末位是0或5,则这个数能被5整除。
5° 若一个数能被2和3整除,则这个数能被6整除。
6° 若一个数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
7° 若一个数的未尾三位数能被8整除,则这个数能被8整除。
8° 若一个数的数字和能被9整除,则这个整数能被9整除。
9° 若一个数的末位是0,则这个数能被10整除。
10° 若一个数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
11° 若一个数能被3和4整除,则这个数能被12整除。
12° 若一个数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,则重复「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
13° 若一个数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,同样重复之前的过程,直到能清楚判断为止。
14° 若一个数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,同样重复之前的计算思路,直到能清楚判断为止。
15° 若一个数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
16° 若一个数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
17° 若一个数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
奇偶性
1° 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为奇数,偶数个奇数的和、差为偶数;
2° 奇数的平方都可以表示成(8m+1)的形式,偶数的平方可以表示为8m或(8m+4)的形式;
3° 若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。
完全平方数
完全平方数及其性质
能表示为某整数的平方的数称为完全平方数,简称平方数。平方数有以下性质与结论:
(1)平方数的个位数字只可能是0,1,4,5,6,9;
(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;
(3)奇数平方的十位数字是偶数;
(4)十位数字是奇数的平方数的个位数一定是6;
(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;
(6)平方数的约数的个数为奇数;
(7)任何四个连续整数的乘积加1,必定是一个平方数。
(8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。
如果有帮助请采纳~来自团队“万能的笔亲”,回答成员“爱笔恋杰”
全部回答
- 1楼网友:执傲
- 2021-12-25 04:56
12345678
- 2楼网友:时间的尘埃
- 2021-12-25 04:16
1
- 3楼网友:何以畏孤独
- 2021-12-25 03:08
它包括负整数(-1,-2,-3…),0,正整数(1,2,3,4)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯