如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.
答案:2 悬赏:30 手机版
解决时间 2021-12-21 20:35
- 提问者网友:却不属于对方
- 2021-12-21 01:49
如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.
最佳答案
- 五星知识达人网友:平生事
- 2021-12-21 02:47
解:∵AB=BD,
∴∠BDA=∠A,
∵BD=DC,
∴∠C=∠CBD,
设∠C=∠CBD=x,
则∠BDA=∠A=2x,
∴∠ABD=180°-4x,
∴∠ABC=∠ABD+∠CDB=180°-4x+x=105°,
解得:x=25°,所以2x=50°,
即∠A=50°,∠C=25°.解析分析:由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.点评:本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.
∴∠BDA=∠A,
∵BD=DC,
∴∠C=∠CBD,
设∠C=∠CBD=x,
则∠BDA=∠A=2x,
∴∠ABD=180°-4x,
∴∠ABC=∠ABD+∠CDB=180°-4x+x=105°,
解得:x=25°,所以2x=50°,
即∠A=50°,∠C=25°.解析分析:由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.点评:本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.
全部回答
- 1楼网友:归鹤鸣
- 2021-12-21 03:52
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯