正方体面的特点
答案:3 悬赏:50 手机版
解决时间 2021-03-29 18:26
- 提问者网友:原来太熟悉了会陌生
- 2021-03-28 22:00
正方体面的特点
最佳答案
- 五星知识达人网友:轮獄道
- 2021-03-28 22:24
正方体的特征:
〔1〕有6个面,每个面完全相同.〔2〕有8个顶点.〔3〕有12条棱,每条棱长度相等.(4)相邻的两条棱互相(相互)垂直
正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6 设一个正方体的棱长为a,则它的表面积S:S=6×a×a
正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a或等于a³; 先取上底面的面对角线,计算,得到,根号2倍棱长 这根面对角线和它相交的棱,就是垂直于上底面的棱,又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,根据勾股定理,得到,体对角线=根号3倍棱长.正方体属于棱柱的一种,棱柱的体积公式同样适用 (要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念) 也可以用正方体的体积=底面积×高计算
〔1〕有6个面,每个面完全相同.〔2〕有8个顶点.〔3〕有12条棱,每条棱长度相等.(4)相邻的两条棱互相(相互)垂直
正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6 设一个正方体的棱长为a,则它的表面积S:S=6×a×a
正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a或等于a³; 先取上底面的面对角线,计算,得到,根号2倍棱长 这根面对角线和它相交的棱,就是垂直于上底面的棱,又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,根据勾股定理,得到,体对角线=根号3倍棱长.正方体属于棱柱的一种,棱柱的体积公式同样适用 (要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念) 也可以用正方体的体积=底面积×高计算
全部回答
- 1楼网友:由着我着迷
- 2021-03-29 00:20
长方体的特征是有12条棱.6个面.8个角.每个角都是90度
正方体的特征是 在长方体中,6个面都相等的长方体是正方体.
〔1〕有3个面(只从一个角度看),每个面面积相等,形状完全相同.
〔2〕有4个顶点(只从一个角度看).
〔3〕有6条棱,(只从一个角度看)每条棱长度相等.
正方体的特征:
〔1〕有6个面,每个面完全相同.〔2〕有8个顶点.〔3〕有12条棱,每条棱长度相等.(4)相邻的两条棱互相(相互)垂直
正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6 设一个正方体的棱长为a,则它的表面积S:S=6×a×a
正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a或等于a³; 先取上底面的面对角线,计算,得到,根号2倍棱长 这根面对角线和它相交的棱,就是垂直于上底面的棱,又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,根据勾股定理,得到,体对角线=根号3倍棱长.正方体属于棱柱的一种,棱柱的体积公式同样适用 (要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念) 也可以用正方体的体积=底面积×高计算
一笑泪光寒062 2014-10-15
正方体的特征是 在长方体中,6个面都相等的长方体是正方体.
〔1〕有3个面(只从一个角度看),每个面面积相等,形状完全相同.
〔2〕有4个顶点(只从一个角度看).
〔3〕有6条棱,(只从一个角度看)每条棱长度相等.
正方体的特征:
〔1〕有6个面,每个面完全相同.〔2〕有8个顶点.〔3〕有12条棱,每条棱长度相等.(4)相邻的两条棱互相(相互)垂直
正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6 设一个正方体的棱长为a,则它的表面积S:S=6×a×a
正方体的体积:
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a或等于a³; 先取上底面的面对角线,计算,得到,根号2倍棱长 这根面对角线和它相交的棱,就是垂直于上底面的棱,又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,根据勾股定理,得到,体对角线=根号3倍棱长.正方体属于棱柱的一种,棱柱的体积公式同样适用 (要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念) 也可以用正方体的体积=底面积×高计算
一笑泪光寒062 2014-10-15
- 2楼网友:老鼠爱大米
- 2021-03-28 23:22
正方体面的特点: 正方体有6个面都是正方形, 大小一样, 6个面的面积都相等, 且相对的面互相平行, 相邻的面互相垂直.
正方体:用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。
特征:
〔1〕正方体有8个顶点,每个顶点连接三条棱。
〔2〕正方体有12条棱,每条棱长度相等。
(3)正方体有6个面,每个面面积相等。
(4)正方体的体对角线: \sqrt{3}a
表面积:因为6个面全部相等,所以正方体的表面积=底面积×6=棱长×棱长×6
体积:
正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a或等于 ;
先取上底面的面对角线,计算,得到,根号2倍棱长
这根面对角线和它相交的棱,就是垂直于上底面的棱,
又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,
根据勾股定理,得到,体对角线=根号3倍棱长。
正方体属于棱柱的一种,棱柱的体积公式同样适用
(要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念)
也可以用正方体的体积=底面积×高计算
同时,正方体的体对角线也等于:体对角线的平方=长的平方+宽的平方+高的平方
正方体:用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。
特征:
〔1〕正方体有8个顶点,每个顶点连接三条棱。
〔2〕正方体有12条棱,每条棱长度相等。
(3)正方体有6个面,每个面面积相等。
(4)正方体的体对角线: \sqrt{3}a
表面积:因为6个面全部相等,所以正方体的表面积=底面积×6=棱长×棱长×6
体积:
正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a或等于 ;
先取上底面的面对角线,计算,得到,根号2倍棱长
这根面对角线和它相交的棱,就是垂直于上底面的棱,
又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,
根据勾股定理,得到,体对角线=根号3倍棱长。
正方体属于棱柱的一种,棱柱的体积公式同样适用
(要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念)
也可以用正方体的体积=底面积×高计算
同时,正方体的体对角线也等于:体对角线的平方=长的平方+宽的平方+高的平方
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯