如图,在矩形ABCD中,AB=2,AD=3,点E、F分别在边BC、DC上,DF=BE=1,则∠EAF=________度.
答案:2 悬赏:40 手机版
解决时间 2021-02-24 21:05
- 提问者网友:箛茗
- 2021-02-24 04:16
如图,在矩形ABCD中,AB=2,AD=3,点E、F分别在边BC、DC上,DF=BE=1,则∠EAF=________度.
最佳答案
- 五星知识达人网友:枭雄戏美人
- 2019-03-05 07:17
45°解析分析:由题意即可推出AE,CF,EC,的长度,根据勾股定理即可推出AE,EF,AF的长度,最后根据勾股定理的逆定理即可推出△AEF为等腰直角三角形,得∠EAF=45°.解答:∵矩形ABCD中,AB=2,AD=3,
∴CD=2,BC=3,
∵DF=BE=1,
∴EC=2,CF=1,
∴AE2=5,EF2=5,AF2=10,
∴AE=EF,
∵AE2+EF2=AF2,
∴△AEF为等腰直角三角形,
∴∠AEF=90°,
∴∠EAF=45°.
故
∴CD=2,BC=3,
∵DF=BE=1,
∴EC=2,CF=1,
∴AE2=5,EF2=5,AF2=10,
∴AE=EF,
∵AE2+EF2=AF2,
∴△AEF为等腰直角三角形,
∴∠AEF=90°,
∴∠EAF=45°.
故
全部回答
- 1楼网友:封刀令
- 2019-10-03 05:31
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯