函数f(x)=sin(4x+3分之派)+cos(4x-6分之派)的最小正周期和递减区间
答案:3 悬赏:60 手机版
解决时间 2021-03-15 15:30
- 提问者网友:杀手的诗
- 2021-03-14 22:31
函数f(x)=sin(4x+3分之派)+cos(4x-6分之派)的最小正周期和递减区间
最佳答案
- 五星知识达人网友:像个废品
- 2021-03-14 22:46
f(x)=sin(4x+π/3)+cos(4x-π/6)
=sin(4x+π-π/6)+cos(4x-π/6)
=sin(π+4x-π/6)+cos(4x-π/6)
=-sin(4x-π/6)+cos(4x-π/6)
=-√2[√2/2*sin(4x-π/6)+√2/2*cos(4x-π/6)]
=-√2[sin(4x-π/6)cosπ/4+cos(4x-π/6)sinπ/4]
=-√2sin(4x-π/6+π/4)
=-√2sin(4x+π/12)
T=2π/4=π/2
递减区间
2kπ+π/2<4x+π/12<2kπ+3π/2
2kπ+5π/12<4x<2kπ+17π/12
kπ/2+5π/48
=sin(4x+π-π/6)+cos(4x-π/6)
=sin(π+4x-π/6)+cos(4x-π/6)
=-sin(4x-π/6)+cos(4x-π/6)
=-√2[√2/2*sin(4x-π/6)+√2/2*cos(4x-π/6)]
=-√2[sin(4x-π/6)cosπ/4+cos(4x-π/6)sinπ/4]
=-√2sin(4x-π/6+π/4)
=-√2sin(4x+π/12)
T=2π/4=π/2
递减区间
2kπ+π/2<4x+π/12<2kπ+3π/2
2kπ+5π/12<4x<2kπ+17π/12
kπ/2+5π/48
全部回答
- 1楼网友:渊鱼
- 2021-03-15 00:05
先分别展开,然后再化简合并得2sin(4x+3分之派),剩下的你应该可以求出了吧
- 2楼网友:神也偏爱
- 2021-03-14 23:29
周期2分之π,递减区间:(24分之π+2分之kπ,24分之7π+2分之kπ)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯