已知双曲线x^2/a^2-y^2/b^2=1.M,N是双曲线上关于原点对称的两点,P是双曲线上任意一点,当直线PM,PN斜率都
都存在,那么Kpm与Kpn之积与P点位置有无关系?
已知双曲线x^2/a^2-y^2/b^2=1.M,N是双曲线上关于原点对称的两点,P是双曲线上任意一点,当直线PM,PN
答案:1 悬赏:10 手机版
解决时间 2021-08-15 02:34
- 提问者网友:人生佛魔见
- 2021-08-14 01:41
最佳答案
- 五星知识达人网友:長槍戰八方
- 2021-08-14 01:56
由题设,可设点M(p,q),N(-p,-q),P(s,t).∴(p²/a²)-(q²/b²)=1,且(s²/a²)-(t²/b²)=1.两式相减得:(s²-p²)/a²-(t²-q²)/b²=0.===>(t²-q²)/(s²-p²)=b²/a².再由斜率公式得:Kpm×Kpn=[(t-q)/(s-p)]×[(t+q)/(s+p)]=(t²-q²)/(s²-p²)=b²/a².∴Kpm×Kpn=b²/a²,该积与点P的位置无关.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯