【已知△ABC的三边为有理数.1)求证cosA是有理数,(2)求对任意正整数n,求证cosnA】
答案:2 悬赏:30 手机版
解决时间 2021-03-03 20:38
- 提问者网友:谁的错
- 2021-03-03 00:03
【已知△ABC的三边为有理数.1)求证cosA是有理数,(2)求对任意正整数n,求证cosnA】
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-03-03 00:54
(1)求证cosA是有理数. 证明:在△ABC中,设BC=a,AC=b,AB=c,则由余弦定理有a²=b²+c²-2bccosA,故cosA=(b²+c²-a²)/(2bc).因为有理数的四则运算结果仍是有理数,所以(b²+c²-a²)/(2bc)是有理数,即cosA是有理数. (2)求对任意正整数n,求证cosnA也是有理数. 用数学归纳法证:当n=1时,由(1)知cosA是有理数,假设cos(n-1)A也是有理数,则cosnA=cos(n-1+1)A=cos(n-1)AcosA-sin(n-1)AsinA,cos(n-1)AcosA 是有理数,只要证sin(n-1)AsinA也是有理数就可以了.sin(n-1)A=√[1-cos²(n-1)A,sinA=√(1-cos²A),能否证明它们是有理数呢?稍后.======以下答案可供参考======供参考答案1:根据公式:a^2=b^2 c^2-bc*CosA,已知abc都为有理数,那么abc的平房也为有理数,所以bcCosA是有理数,所以cosA是有理数。设Cos nA是有理数。我们可以证出Cos 2A是有理。再设Cos (n-1)A是有理,那么可以得出Sin nA*sin A是有理,就可以推出Cos (n 1)A是有理。则可以通过Cos A cos2A推出后面所有的供参考答案2:1)由余弦定理得cosA=(b*b+c*c-a*a)/2bc,因为a、b、c是有理数啊,所以对他们做的简单的运算后的结果还是有理数啊。2)可知道复数的幂次方公式?就是棣莫费定理(cosA+isinA)的n次方=cosnA+isinnA。cosnA总可以表示成cosA和sinA叠加的形式,而他们都是有理数。给你算一个简单的例子:把cos3A化简为cosA和sinA的形式。不就是用cos3A+isin3A=(cosA+isinA)的三次方=cosA*cosA*cosA-3cosA*sinA*sinA+3i*cosA*cosA*sinA-isinA*sinA*sinA,把他们实部和实部对应就得到cos3A=cosA*cosA*cosA-3cosA*sinA*sinA,由此可见cos3A是一个有理数吧就用这个方法,我也可以得到cosnA=....太烦了不好打,反正就用上面的方法,最后用二项式定理展开可以看到他的每一项都是cosA和sinA的形式。那么他就是有理数喽。这是我的超麻烦的方法,不知道谁教教我简单的方法啊供参考答案3:我也喜欢用棣莫费定理,其实很简单供参考答案4:赞!楼上两位都会用棣莫费定理,不过我给上面那位补充一下:cosnA的展开项应该是cosA和sinA的偶次项乘积的形式吧,因为sinA的偶次项总是有理数嘛。从而保证它每一项都是有理数。供参考答案5:现在高考考的都是大学里的知识 悲哀啊。。这问题到了大学高等数学里就变的小儿科了- -供参考答案6:呃,棣莫费都出来了,那还不如直接泰勒展开得了呢,一步到位供参考答案7:面对第二题,先证明cos2A=2cos^2A-1为有理数,而cosnA=cos(n-1+1)A=cos(n-1)AcosA-sin(n-1)AsinA,其中sin(n-1)AsinA=1/2[cosnA-cos(n-2)A]因此得知cosnA=cos(n-1)AcosA+1/2[cosnA-cos(n-2)A]cosnA=2cos(n-1)AcosA-cos(n-2)A,以cosA,cos2A为有理数类推,cosnA为有理数。不是很难吧。个人认为。供参考答案8:因为a^2=b^2 c^2-bc*CosA所以Cos A cos2A
全部回答
- 1楼网友:拾荒鲤
- 2021-03-03 02:08
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯