已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
答案:2 悬赏:70 手机版
解决时间 2021-01-03 16:05
- 提问者网友:两耳就是菩提
- 2021-01-02 15:39
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
最佳答案
- 五星知识达人网友:爱难随人意
- 2021-01-02 16:28
解:任取x1<x2,x2-x1>0,
∵当x>0时,f(x)>0,
∴f(x2-x1)>0
∵f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)
∴f(x2)-f(x1)=f(x2-x1)>0,
即∴f(x2)>f(x1)
∴f(x)为增函数.
在条件中,令y=-x,则f(0)=f(x)+f(-x),
再令x=y=0,则f(0)=2?f(0),
∴f(0)=0,故f(-x)=-f(x),f(x)为奇函数,
∴f(1)=-f(-1)=2,又f(-2)=2f(-1)=-4,
∴f(x)的值域为[-4,2].解析分析:依据函数单调性的定义判断函数的单调性,充分利用条件当x>0时,有f(x)>0与f(x+y)=f(x)+f(y),即可判定单调性,再判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;最后求f(x)在区间[-2,1]上的值域即可.点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.
∵当x>0时,f(x)>0,
∴f(x2-x1)>0
∵f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)
∴f(x2)-f(x1)=f(x2-x1)>0,
即∴f(x2)>f(x1)
∴f(x)为增函数.
在条件中,令y=-x,则f(0)=f(x)+f(-x),
再令x=y=0,则f(0)=2?f(0),
∴f(0)=0,故f(-x)=-f(x),f(x)为奇函数,
∴f(1)=-f(-1)=2,又f(-2)=2f(-1)=-4,
∴f(x)的值域为[-4,2].解析分析:依据函数单调性的定义判断函数的单调性,充分利用条件当x>0时,有f(x)>0与f(x+y)=f(x)+f(y),即可判定单调性,再判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;最后求f(x)在区间[-2,1]上的值域即可.点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.
全部回答
- 1楼网友:一秋
- 2021-01-02 17:15
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯