求f(x)=x的平方+1分之2x-2的极值
答案:2 悬赏:0 手机版
解决时间 2021-02-04 05:09
- 提问者网友:鐵馬踏冰河
- 2021-02-03 21:48
求f(x)=x的平方+1分之2x-2的极值
最佳答案
- 五星知识达人网友:神鬼未生
- 2021-02-03 23:10
当x=1时,f(1)=0
当x≠1时,
f(x)=(2x-2)/(x^2+1)
=2(x-1)/(x^2-2x+1+2x)
=2(x-1)/[(x-1)^2+2x]
=2/[(x-1)+2x/(x-1)]
=2/[(x-1)+2+2/(x-1)]
=1/[(x-1)/2+1/(x-1)+1]
因为(x-1)/2+1/(x-1)>=√2或<=-√2
所以(x-1)/2+1/(x-1)+1>=1+√2或<=1-√2
1/[(x-1)/2+1/(x-1)+1]∈[-1-√2,0)∪(0,√2-1]
综上所述,f(x)∈[-1-√2,√2-1],极小值为-1-√2,极大值为√2-1
当x≠1时,
f(x)=(2x-2)/(x^2+1)
=2(x-1)/(x^2-2x+1+2x)
=2(x-1)/[(x-1)^2+2x]
=2/[(x-1)+2x/(x-1)]
=2/[(x-1)+2+2/(x-1)]
=1/[(x-1)/2+1/(x-1)+1]
因为(x-1)/2+1/(x-1)>=√2或<=-√2
所以(x-1)/2+1/(x-1)+1>=1+√2或<=1-√2
1/[(x-1)/2+1/(x-1)+1]∈[-1-√2,0)∪(0,√2-1]
综上所述,f(x)∈[-1-√2,√2-1],极小值为-1-√2,极大值为√2-1
全部回答
- 1楼网友:底特律间谍
- 2021-02-03 23:35
设t=inx,所以,x=e的t次方,所以f(t)=2e的t次方-2t,所以最小为2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯