永发信息网

高中理科数学,排列组合问题求详解。甚为感谢,定好评。

答案:2  悬赏:40  手机版
解决时间 2021-03-03 19:14
高中理科数学,排列组合问题求详解。甚为感谢,定好评。
最佳答案
一、相邻问题捆绑法
例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种
A. 720 B. 360 C. 240 D. 120
解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。
二、相离问题插空法
例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)
解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。
三、定序问题缩倍法
例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。
评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。
四、标号排位问题分步法
例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )
A. 6种 B. 9种 C. 11种 D. 23种
解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法。故共有3×3×1=9种填法,而选B。
评注:把元素排在指定号码的位置上称为标号排位问题。求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。
五、有序分配问题逐分法
例5 有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )种
A. 1260 B. 2025 C. 2520 D. 5040
解:先从10人中选出2人承担甲项任务,再从剩下8人中选1人承担乙项任务,最后从剩下7人中选1人承担丙项任务。根据分步计数原理可知,不同的选法共有=2520种,故选C。
评注:有序分配问题是指把元素按要求分成若干组,常采用逐步下量分组法求解。
六、多元问题分类法
例6 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )
A. 210个 B. 300个 C. 464个 D. 600个
解:按题意个位数只可能是0,1,2,3,4共5种情况,符合题意的分别有,个。合并总计,共有+=300(个),故选B。
评注:元素多,取出的情况也多种,可按结果要求,分成互不相容的几类情况分别计算,最后总计。
另解:先排首位,不用0,有种方法;再同时排个位和十位,由于个位数字小于十位数字,即顺序固定,故有种方法;最后排剩余三个位置,有种排法。故共有符合要求的六位数=300(个)。
七、交叉问题集合法
例7 从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?
解:设全集U={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式可得参赛方法共有
=252(种)。
评注:某些排列组合问题几部分之间有交集,可用集合中求元素个数的公式:来求解。
八、定位问题优限法
例8 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )
A. B. C. D.
解:先把3种品种的画看成整体,而水彩画不能放在头尾,故只能放在中间,则油画与国画有种放法。再考虑油画之间与国画之间又可以各自全排列。故总的排列的方法为种,故选D。
评注:所谓“优限法”,即有限制条件的元素(或位置)在解题时优先考虑。
九、多排问题单排法
例9 两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一座位),则不同的坐法种数为( )
A. B. C. D.
解:此题分两排坐,实质上就是8个人坐在8个座位上,故有种坐法,所以选D。
评注:把元素排成几排的问题,可归结为一排考虑。
十、至少问题间接法
例10 从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种
A. 140 B. 80 C. 70 D. 35
解析:在被取出的3台中,若不含甲型或不含乙型的抽取方法均不合题意,故符合题意的取法有=70种,选C。
评注:含“至多”或“至少”的排列组合问题,通常用分类法。本题所用的解法是间接法,即排除法(总体去杂),适用于反面情况明确且易于计算的情况。
十一、选排问题先取后排法
例11 四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有_________种(用数字作答)。
解:先从四个小球中取两个放在一起,种不同的取法;再把取出的两个小球与另外两个小球看作三堆,并分别放入四个盒子中的三个盒子中,有种不同的放法。依据分步计数原理,共有种不同的方法。
评注:这是一道排列组合的混合应用题目,这类问题的一般解法是先取(组合)后排(排列)。本题正确求解的关键是把四个小球中的两个视为一个整体,如果考虑不周,就会出现重复和遗漏的错误。
十二、部分符合条件淘汰法
例12 四面体的顶点及各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有( )
A. 150种 B. 147种 C. 144种 D. 141种
解:10个点中取4个点共有种取法,其中同一侧面内的6个点中任取4个点必共面,这样的面共有4个;又同一条棱上的3个点与对棱的中点也四点共面,共有6个面;再各棱中点共6个点中,取四点共面的平面有3个。故符合条件4个点不共面的取法共有=141(种),故选D。
评注:在选取总数中,只有一部分符合条件,可从总数中减去不符合条件的个数,即为所求。
全部回答
虽然我很聪明,但这么说真的难到我了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
中亨都市花园北门地址有知道的么?有点事想过
猫到底要吃什么??
我的oppor11s用了一个月,我想换oppor15.怎么
一个三十岁有点姿色的女人,还能找到喜欢她爱
我8月13号网申的民生信用卡,14号开始录入系
用所给词的适当形式填空Why( )America andCan
关于大美日照的古诗
尾纳1号桥地址在哪,我要去那里办事
2016郸城县实验中学八6班成绩
山东经济学院会计研究生在哪个校区
my head is swim min g,翻译成中文是什么意
【史学家】马涅托是以下哪一文明的埃及史学家
梦悠情缘网吧这个地址在什么地方,我要处理点
荷郎养生酒是不是骗人的
苹果手机屏碎了好久没有用了 后来去换了一个
推荐资讯
刀剑神域精灵篇桐人去海底战斗是第几集
【环境保护】重金属污染物对人体健康危害巨大
房顶漏是在室内补呢还是在顶上补那个更好些?
常温下的饺子粘在一起,要怎么分开?
坦克 大炮 装甲车 怎么区分
数值分析求收敛性用雅可比,高斯赛德尔法分别
用中性笔写出来的字明显没钢笔写出来的好。为
成语垂涎三尺的图片
【信用的基本特征是】...与银行信用各自有哪
杨家河湾我想知道这个在什么地方
我自己做了个网站。想挂点广告挣点钱!该怎么
聚美优品货到付款怎么取消
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?