已知函数f(x)=(x^2+2ax)|x-2|的图形为轴对称图形,则实数a的值为?
答案:2 悬赏:60 手机版
解决时间 2021-01-25 08:38
- 提问者网友:做自己de王妃
- 2021-01-24 23:06
已知函数f(x)=(x^2+2ax)|x-2|的图形为轴对称图形,则实数a的值为?
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-01-24 23:33
首先,f(x)可以拆分成两个函数的乘积,即f(x)=g(x)h(x).然后,在观察对称轴可能是那个.从|x-2|可以看出图形可能是关于x=2对称.此时,h(x)已经关于x=2对称.那么只要让g(x)=x^2+2ax关于x=2对称就好了.观察这个2次函数,可以化为x(x+2a).其与x轴有x=0一个交点和x=-2a一个交点.对于2次曲线的对称性,可以得出,当-2a=4时,此g(x)关于x=2对称.即a=-2.此时用T=x-2代替自变量则可得新的函数F(T)=f(x)=[(T+2)^2-4(T+2)]|T|=(T^2-4)|T| 此函数是轴对称的.得解======以下答案可供参考======供参考答案1:y=(x²+2ax)▪|x-2|轴对称,其中发现x²+2ax=(x+a)²-a²轴对称,对称轴为x=-a;|x-2|也轴对称,对称轴为x=2,而y=(x²+2ax)▪|x-2|轴对称,所以对称轴应一致,即-a=2,a=-2
全部回答
- 1楼网友:孤独入客枕
- 2021-01-25 00:42
我检查一下我的答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯