如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.
①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.
题设(已知):________.
结论(求证):________.
证明:________.
如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD
答案:2 悬赏:20 手机版
解决时间 2021-02-25 18:58
- 提问者网友:我一贱你就笑
- 2021-02-25 10:23
最佳答案
- 五星知识达人网友:逐風
- 2020-03-09 20:46
①② ③ 省略解析分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC-∠EBC=∠DCB-∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.
求证:∠1=∠2.
证明:∵AB⊥BC、CD⊥BC,
∴AB∥CD,
∴∠ABC=∠DCB,
又∵BE∥CF,
∴∠EBC=∠FCB,
∴∠ABC-∠EBC=∠DCB-∠FCB,
∴∠1=∠2.
故
求证:∠1=∠2.
证明:∵AB⊥BC、CD⊥BC,
∴AB∥CD,
∴∠ABC=∠DCB,
又∵BE∥CF,
∴∠EBC=∠FCB,
∴∠ABC-∠EBC=∠DCB-∠FCB,
∴∠1=∠2.
故
全部回答
- 1楼网友:低血压的长颈鹿
- 2021-02-07 23:22
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯