如图,在△ABC中,AD平分∠BAC,BE⊥AD,BE交AD的延长线于点E,点F在AB上,且EF∥AC.求证:点F是AB的中点.
答案:2 悬赏:40 手机版
解决时间 2021-04-03 23:00
- 提问者网友:聂風
- 2021-04-03 17:29
如图,在△ABC中,AD平分∠BAC,BE⊥AD,BE交AD的延长线于点E,点F在AB上,且EF∥AC.求证:点F是AB的中点.
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-04-03 18:40
证明:∵AD平分∠BAC,
∴∠BAE=∠CAE,
∵EF∥AC,
∴∠AEF=∠CAE,
∴∠AEF=∠BAE,
∴AF=EF,
又∵BE⊥AD,
∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,
又∠AEF=∠BAE,
∴∠ABE=∠BEF,
∴BF=EF,
∴AF=BF,
∴F为AB中点.解析分析:由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.点评:此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.
∴∠BAE=∠CAE,
∵EF∥AC,
∴∠AEF=∠CAE,
∴∠AEF=∠BAE,
∴AF=EF,
又∵BE⊥AD,
∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,
又∠AEF=∠BAE,
∴∠ABE=∠BEF,
∴BF=EF,
∴AF=BF,
∴F为AB中点.解析分析:由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.点评:此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.
全部回答
- 1楼网友:毛毛
- 2021-04-03 20:04
正好我需要
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯