问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
Ⅰ.如图①,在正三角形△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN.
Ⅱ.如图②,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
任务要求:
(1)请你从Ⅰ、Ⅱ两个命题中选择一个进行证明.
(2)如图,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否还成立?若成立,请给予证明;若不成立,请说明理由.
问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:Ⅰ.如图①,在正三角形△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°
答案:2 悬赏:10 手机版
解决时间 2021-01-22 20:35
- 提问者网友:蓝琪梦莎
- 2021-01-22 10:08
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-01-22 11:13
解:(1)选命题Ⅰ.
证明:在图1中,∵△ABC是正三角形,
∴BC=CA,∠BCM=∠CAN=60°.
∵∠BON=60°,
∴∠CBM+∠BCN=60°.
∵∠BCN+∠ACN=60°,
∴∠CBM=∠ACN.
∴△BCM≌△CAN(ASA).
∴BM=CN.
选命题Ⅱ.
证明:在图2中∵四边形ABCD是正方形,
∴BC=CD,∠BCM=∠CDN=90°.
∵∠BON=90°,
∴∠CBM+∠BCN=90°.
∵∠BCN+∠DCN=90°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.
(2)BM=CN成立.
证明:在图3中,∵五边形ABCDE是正五边形,
∴BC=CD,∠BCM=∠CDN=108°.
∵∠BON=108°,
∴∠CBM+∠BCN=108°.
∵∠BCN+∠DCN=108°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.解析分析:(1)正三角形ABC中,可通过全等三角形来证明BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;(2)正方形和正五边形的证明过程与正三角形的一样,都是通过全等三角形来得出线段的相等,证三角形的过程中都是根据∠BON和多边形的内角相等得出一组两三角形中的一组对应角相等,然后根据正多边形的内角和边相等,得出△BCM和△CND全等,进而得出BM=CN.点评:本题主要考查了全等三角形,正多边形等几何知识,是一道几何型探究题.本题是一道非常典型的几何探究题,很好地体现了从一般到特殊的数学思想方法,引导学生渐渐地从易走到难,是新课标形势下的成熟压轴题.
证明:在图1中,∵△ABC是正三角形,
∴BC=CA,∠BCM=∠CAN=60°.
∵∠BON=60°,
∴∠CBM+∠BCN=60°.
∵∠BCN+∠ACN=60°,
∴∠CBM=∠ACN.
∴△BCM≌△CAN(ASA).
∴BM=CN.
选命题Ⅱ.
证明:在图2中∵四边形ABCD是正方形,
∴BC=CD,∠BCM=∠CDN=90°.
∵∠BON=90°,
∴∠CBM+∠BCN=90°.
∵∠BCN+∠DCN=90°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.
(2)BM=CN成立.
证明:在图3中,∵五边形ABCDE是正五边形,
∴BC=CD,∠BCM=∠CDN=108°.
∵∠BON=108°,
∴∠CBM+∠BCN=108°.
∵∠BCN+∠DCN=108°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.解析分析:(1)正三角形ABC中,可通过全等三角形来证明BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;(2)正方形和正五边形的证明过程与正三角形的一样,都是通过全等三角形来得出线段的相等,证三角形的过程中都是根据∠BON和多边形的内角相等得出一组两三角形中的一组对应角相等,然后根据正多边形的内角和边相等,得出△BCM和△CND全等,进而得出BM=CN.点评:本题主要考查了全等三角形,正多边形等几何知识,是一道几何型探究题.本题是一道非常典型的几何探究题,很好地体现了从一般到特殊的数学思想方法,引导学生渐渐地从易走到难,是新课标形势下的成熟压轴题.
全部回答
- 1楼网友:忘川信使
- 2021-01-22 12:15
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯