求解微分方程x'-x=siny
答案:1 悬赏:40 手机版
解决时间 2021-02-24 12:51
- 提问者网友:一抹荒凉废墟
- 2021-02-23 15:21
求解微分方程x'-x=siny
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-02-23 15:55
这是一阶线性微分方程,直接套公式就OK了。注意自变量为y,函数为x。
P=-1
Q=siny
∫Pdy=-y
e^(∫Pdy)=e^(-y)
e^(-∫Pdy)=e^y
∫(siny)·e^(∫Pdy)dy=∫[e^(-y)]sinydy
利用分部积分法:
∫[e^(-y)]sinydy
=-∫sinyd[e^(-y)]=-[e^(-y)]siny+∫[e^(-y)]d(siny)=-[e^(-y)]siny+∫[e^(-y)]cosydy
=-[e^(-y)]siny-∫cosyd[(e^(-y)]=-[e^(-y)]siny-{[e^(-y)]cosy-∫[e^(-y)]d(cosy)}
=-[e^(-y)](siny+cosy)-∫[e^(-y)]sinydy
注意最后一项与原始积分式相同,移项解得:
∫(e^y)sinydy=(-1/2)[e^(-y)](siny+cosy)
所以最后结果为:
x=(e^y){(-1/2)[e^(-y)](siny+cosy)+C}
=(-1/2)(siny+cosy)+C(e^y)………………C为任意常数
P=-1
Q=siny
∫Pdy=-y
e^(∫Pdy)=e^(-y)
e^(-∫Pdy)=e^y
∫(siny)·e^(∫Pdy)dy=∫[e^(-y)]sinydy
利用分部积分法:
∫[e^(-y)]sinydy
=-∫sinyd[e^(-y)]=-[e^(-y)]siny+∫[e^(-y)]d(siny)=-[e^(-y)]siny+∫[e^(-y)]cosydy
=-[e^(-y)]siny-∫cosyd[(e^(-y)]=-[e^(-y)]siny-{[e^(-y)]cosy-∫[e^(-y)]d(cosy)}
=-[e^(-y)](siny+cosy)-∫[e^(-y)]sinydy
注意最后一项与原始积分式相同,移项解得:
∫(e^y)sinydy=(-1/2)[e^(-y)](siny+cosy)
所以最后结果为:
x=(e^y){(-1/2)[e^(-y)](siny+cosy)+C}
=(-1/2)(siny+cosy)+C(e^y)………………C为任意常数
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯