已知函数f(x)=loga(x2+1)(a>1).
(1)判断f(x)的奇偶性;
(2)求函数f(x)的值域.
已知函数f(x)=loga(x2+1)(a>1).
答案:1 悬赏:10 手机版
解决时间 2021-05-22 04:00
- 提问者网友:未信
- 2021-05-21 13:22
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-05-21 13:29
(1)已知函数f(x)=loga(x2+1)(a>1),且x2+1>0恒成立,
因此f(x)的定义域为R,关于坐标原点对称,
又f(-x)=loga[(-x)2+1]=loga(x2+1)=f(x),
所以f(x)为偶函数.
(2)∵x2≥0,∴x2+1≥1,
又∵a>1,∴loga(x2+1)≥loga1=0,
故f(x)=loga(x2+1)(a>1)的值域为[0,+∞).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯