要详细过程 只给答案的就不要写了 :
设{an}为等差数列,bn=(1/2)^an,已知b1+b2+b3=21/8 b1*b2*b3=1/8 求通项an
要详细过程 只给答案的就不要写了 :
设{an}为等差数列,bn=(1/2)^an,已知b1+b2+b3=21/8 b1*b2*b3=1/8 求通项an
设an的公差为d
由b1*b2*b3=1/8得
(1/2)^(3a1+3d)=1/8 a1+d=1 a1=1-d a2=a1+d=1 a3=1+d
由b1+b2+b3=21/8得
(1/2)^a1+(1/2)+(1/2)^(1+d)=21/8
(1/2)^a1+(1/2)^(1+d)=17/8
(1/2)^(1-d)+(1/2)(1+d)=17/8
设y=(1/2)^d
1/(2y)+y/2=17/8
4y^2-17y+4=0
y=1/4 或4
d=2或-2
a1=1-d=-1或3
an=-1+2(n-1)或an=3-2(n-1)
b1*b2*b3=1/8 则 (1/2)^a1*(1/2)^a2*(1/2)^a3=1/8 则(1/2)^(a1+a2+a3)=(1/2)^(3a2)=1/8
所以a2=1
设an=a+(n-1)d 所以 a+d=1
b1+b2+b3=21/8
(1/2)^a+(1/2)^(a+2d)=(1/2)^(1-d)+(1/2)^(1+d)=17/8=1/8+2=(1/2)^3+(1/2)^-1
所以d=-1 则a=2 则an=3-n