永发信息网

高中数学三角函数都有什么性质和应用啊?

答案:1  悬赏:40  手机版
解决时间 2021-04-12 12:30
要高中的,全部性质
最佳答案
 三角函数内容规律
  三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.
  1、三角函数本质:
  三角函数的本质来源于定义,如右图:
  根据右图,有
  sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。
  深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导
  sin(A+B) = sinAcosB+cosAsinB 为例:
  推导:
  首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。
  A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))
  OA'=OA=OB=OD=1,D(1,0)
  ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2
  和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)
   [1]
  两角和公式
  sin(A+B) = sinAcosB+cosAsinB
  sin(A-B) = sinAcosB-cosAsinB 
  cos(A+B) = cosAcosB-sinAsinB
  cos(A-B) = cosAcosB+sinAsinB
  tan(A+B) = (tanA+tanB)/(1-tanAtanB)
  tan(A-B) = (tanA-tanB)/(1+tanAtanB)
  cot(A+B) = (cotAcotB-1)/(cotB+cotA) 
  cot(A-B) = (cotAcotB+1)/(cotB-cotA) [编辑本段]锐角三角函数公式  sin α=∠α的对边 / 斜边
  cos α=∠α的邻边 / 斜边
  tan α=∠α的对边 / ∠α的邻边 [编辑本段]倍角公式  Sin2A=2SinA•CosA
  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
  tan2A=(2tanA)/(1-tanA^2)
  (注:SinA^2 是sinA的平方 sin2(A) ) [编辑本段]三倍角公式  
  sin3α=4sinα·sin(π/3+α)sin(π/3-α)
  cos3α=4cosα·cos(π/3+α)cos(π/3-α)
  tan3a = tan a · tan(π/3+a)· tan(π/3-a) [编辑本段]三倍角公式推导  sin3a
  =sin(2a+a)
  =sin2acosa+cos2asina
  =2sina(1-sin²a)+(1-2sin²a)sina
  =3sina-4sin³a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos²a-1)cosa-2(1-sin²a)cosa
  =4cos³a-3cosa
  sin3a=3sina-4sin³a
  =4sina(3/4-sin²a)
  =4sina[(√3/2)²-sin²a]
  =4sina(sin²60°-sin²a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos³a-3cosa
  =4cosa(cos²a-3/4)
  =4cosa[cos²a-(√3/2)²]
  =4cosa(cos²a-cos²30°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a) [编辑本段]半角公式   tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. [编辑本段]和差化积  sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]
  sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]
  cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]
  cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]
  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) [编辑本段]积化和差  sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]
  cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]
  sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]
  cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] [编辑本段]诱导公式  sin(-α) = -sinα
  cos(-α) = cosα
  sin(π/2-α) = cosα
  cos(π/2-α) = sinα
  sin(π/2+α) = cosα
  cos(π/2+α) = -sinα
  sin(π-α) = sinα
  cos(π-α) = -cosα
  sin(π+α) = -sinα
  cos(π+α) = -cosα
  tanA= sinA/cosA
  tan(π/2+α)=-cotα
  tan(π/2-α)=cotα
  tan(π-α)=-tanα
  tan(π+α)=tanα
  诱导公式记背诀窍:奇变偶不变,符号看象限 [编辑本段]万能公式   [编辑本段]其它公式  (1) (sinα)^2+(cosα)^2=1
  (2)1+(tanα)^2=(secα)^2
  (3)1+(cotα)^2=(cscα)^2
  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
  (4)对于任意非直角三角形,总有
  tanA+tanB+tanC=tanAtanBtanC
  证:
  A+B=π-C
  tan(A+B)=tan(π-C)
  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  得证
  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
  (5)cotAcotB+cotAcotC+cotBcotC=1
  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC [编辑本段]其他非重点三角函数  csc(a) = 1/sin(a)
  sec(a) = 1/cos(a)
   [编辑本段]双曲函数  sinh(a) = [e^a-e^(-a)]/2
  cosh(a) = [e^a+e^(-a)]/2
  tg h(a) = sin h(a)/cos h(a)
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)= sinα
  cos(2kπ+α)= cosα
  tan(kπ+α)= tanα
  cot(kπ+α)= cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)= -sinα
  cos(π+α)= -cosα
  tan(π+α)= tanα
  cot(π+α)= cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)= -sinα
  cos(-α)= cosα
  tan(-α)= -tanα
  cot(-α)= -cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)= sinα
  cos(π-α)= -cosα
  tan(π-α)= -tanα
  cot(π-α)= -cotα
  公式五:
  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)= -sinα
  cos(2π-α)= cosα
  tan(2π-α)= -tanα
  cot(2π-α)= -cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)= cosα
  cos(π/2+α)= -sinα
  tan(π/2+α)= -cotα
  cot(π/2+α)= -tanα
  sin(π/2-α)= cosα
  cos(π/2-α)= sinα
  tan(π/2-α)= cotα
  cot(π/2-α)= tanα
  sin(3π/2+α)= -cosα
  cos(3π/2+α)= sinα
  tan(3π/2+α)= -cotα
  cot(3π/2+α)= -tanα
  sin(3π/2-α)= -cosα
  cos(3π/2-α)= -sinα
  tan(3π/2-α)= cotα
  cot(3π/2-α)= tanα
  (以上k∈Z)
  这个物理常用公式我费了半天的劲才输进来,希望对大家有用
  A·sin(ωt+θ)+ B·sin(ωt+φ) =
  √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
  √表示根号,包括{……}中的内容
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
单选题诗句“风怒欲拔木,雨暴欲掀屋。风声翻
dnf好好的弹出来是什么原因
老年人心力衰竭,高烧不退怎么办
不耻下问的前一句,论语中有关不耻下问的名言
动感地带的密友畅聊包怎么在业务办理列表中找
光明花苑北区(西南门)地址在什么地方,想过去
单选题“请人吃饭不如请人锻炼”已成为当今都
离婚二审不服财产分割
抵制外货是不是理性的爱国主义?(500字左右
危险化学品经营单位法人资格证还要每年培训吗
宠物熊如何获得钥匙碎片
石家庄梦洁实业有限公司地址有知道的么?有点
古代汉语中的介词一般由什么转化而来的
从经济法角度,双倍反还定金怎样理解,比如我
开机时显示missing operating system怎样重装
推荐资讯
从广州坐火车到莒县怎么走才最划算
古典耽美小说,两个男人的,一个好像是王爷,名
碑林区基督教会怎么去啊,有知道地址的么
临沂有雅漾的专柜吗
对自己刻薄是什么意思,他为人刻薄,挖苦起人
王亭文她几岁
新加坡灯饰市场在哪里
在台州椒江哪里可以学跆拳道,是大人要学,学
钓武昌鱼用什么小药,武昌鱼吃什么饵
诚信的诗句有哪些,关于诚信的诗句有那些?
过生日要红包祝福语,群主过生日发红包的句子
报考飞行员脸有痘可以吗
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?