高中数学集合,矩阵,2D矢量问题急用~
- 提问者网友:未信
- 2021-04-25 00:19
集合,矩阵,2D矢量问题 相关详细介绍,和说明.THX!~
- 五星知识达人网友:掌灯师
- 2021-04-25 00:28
集合的概念
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元.如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母.任何集合是它自身的子集.
元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种.
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
矩阵
数学上,矩阵就是由方程组的系数及常数所构成的方阵.把用在解线性方程组上既方便,又直观.例如对于方程组.
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
来说,我们可以构成两个矩阵:
a1b1c1a1b1c1d1
a2b2c2a2b2c2d2
a3b3c3a3b3c3d3
因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来.
矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的.
数学上,一个m×n矩阵乃一m行n列的矩形阵列.矩阵由数组成,或更一般的,由某环中元素组成.
矩阵常见于线性代数、线性规划、统计分析,以及组合数学等.请参考矩阵理论.
2D矢量
在有限维向量空间中,也与线性相关与线性变换密切相关,但无需限制于三维组.同时假定有理运算能够施行(这个极大地影响了计算机科学发展),讨论域为任意域,并且要将基本数系的可交换性除去.
无限维向量空间(任意维),涉及Zorn引理、基数理论、拓扑等较深的数学概念,在这里建议网友对抽象代数学有一定基础时自己理解.