lim x->正无穷 (1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+............+n/(n^2+n+n))是多少?
要详细过程。
谢谢
lim x->正无穷 (1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+............+n/(n^2+n+n))是多少?
要详细过程。
谢谢
你是大学生?这道题用夹逼准则哈:可得1/(n^2+n+n)+2/(n^2+n+n)+3/(n^2+n+n)+............+n/(n^2+n+n)=(1+2+3+....n)/(n^2+n+n)<=1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+............+n/(n^2+n+n)〈=(1/(n^2+n)+2/(n^2+n+1)+3/(n^2+n+1)+............+n/(n^2+n+1)=(1+2+3+......n)/(n^2+n+1)
即:n(n+1)/2(n^2+n+n)<=1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+............+n/(n^2+n+n)<=n(n+1)/2(n^2+n+1)
三部分同时求极限可得1/2〈=中间的极限〈=1/2 所以所求极限是1/2