利用基本不等式证明:根号a²+b²≥2分之根号2(a+b)
利用基本不等式证明:根号a²+b²≥2分之根号2(a+b)
答案:1 悬赏:80 手机版
解决时间 2021-08-16 02:00
- 提问者网友:你给我的爱
- 2021-08-15 02:32
最佳答案
- 五星知识达人网友:零点过十分
- 2021-08-15 04:09
证明:
∵a^2+b^2≥2ab
∴(1/2)a^2+(1/2)b^2≥ab(不等号左右两边同时除以2)
∴a^2+b^2≥(1/2)a^2+(1/2)b^2+ab(不等号左右两边同时加上(1/2)a^2+(1/2)b^2)
∴a^2+b^2≥(1/2)(a^2+2ab+b^2)(不等号右边提出公因数1/2)
∴a^2+b^2≥(1/2)(a+b)^2(对不等号右边进行整理)
∵a^2+b^2≥0,(1/2)(a+b)^2≥0(平方数是非负数)
∴√(a^2+b^2)≥√[(1/2)(a+b)^2]=[(√2)/2](a+b)(不等号两边取算术平方根).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯