有关z=f(x,y)是否可微的判断问题!我知道有推论:若z=f(x,y)的偏导数在(a,b)点连续,
答案:2 悬赏:0 手机版
解决时间 2021-02-03 19:44
- 提问者网友:我的未来我做主
- 2021-02-03 04:30
有关z=f(x,y)是否可微的判断问题!我知道有推论:若z=f(x,y)的偏导数在(a,b)点连续,
最佳答案
- 五星知识达人网友:罪歌
- 2021-02-03 05:18
结论“偏导连续则可微”在做题的时候用的并不多,除非两个偏导数的形式很简单,因为二元函数的连续性并不像一元函数那么容易判定.何况我们只是讨论一个点处的可微性,无需求出偏导函数判断函数F(x,y)在(x0,y0)处是否可微的步骤:(1)先判断连续性,即讨论(x,y)→(x0,y0)时,F(x,y)的极限值是否等于函数值F(x0,y0).若不连续,则不可微;若连续,继续下一步(2)求(x0,y0)处的偏导数.若偏导数至少有一个不存在,则不可微;若两个偏导数都存在,继续下一步(3)说明△z-Fx(x0,y0)△x-Fy(x0,y0)△y是ρ的高阶无穷小,即判断 [△z-Fx(x0,y0)△x-Fy(x0,y0)△y ]/ρ 是否趋向于0,若是,则可微,否则不可微======以下答案可供参考======供参考答案1:af
全部回答
- 1楼网友:十年萤火照君眠
- 2021-02-03 05:39
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯