已知双曲线中心在原点,焦点F1 ,F2 在坐标轴上,离心率e=根号2,且过点(4,根号10).(1)求双曲线的方程
(2)若点M(X0,Y0)在双曲线上,求MF1·MF2的取值范围.(是两个向量相乘)
(3)点P是双曲线上一点,若∠F1PF2为锐角,求点P的横坐标的取值范围.
已知双曲线中心在原点,焦点F1 ,F2 在坐标轴上,离心率e=根号2,且过点(4,根号10).(1)求双曲线的方程
答案:1 悬赏:70 手机版
解决时间 2021-08-14 08:16
- 提问者网友:那叫心脏的地方装的都是你
- 2021-08-13 19:53
最佳答案
- 五星知识达人网友:神的生死簿
- 2021-08-13 20:05
1)设方程为 x²/a²-y²/b²=1
∵c²/a²=e²=2 b²=c²-a² ∴b²=2a²-a²=a²
16/a²-10/a²=1 => a²=6 【若计算得a²为负数,则焦点在y轴】
∴方程 x²/6-y²/6=1 为所求.
2)xm=3时,ym=m=±√(9-6)=±√3 (即ym'=√3;ym''=-√3)
∵F1(-√12,0) ; F2(√12,0)
∴M'F1的斜率 k(m'f1)=(ym'-yf1)/(xm'-xf1)=(√3-0)/(3+√12)=2-√3
M'F2的斜率 k(m'f2)=(ym'-yf2)/(xm'-xf2)=(√3-0)/(3-√12)=-2-√3
而2-√3=-1/(-2-√3)
∴M'F1⊥M'F2
同理 MF1⊥MF2
∴MF1⊥MF2
∴向量MF1与向量MF2的点积为零.
3)|F1F2|=2√12 |ym|=√3
∴S⊿F1MF2=(|F1F2|*|ym|)/2=2√12*√3/2=6
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯