正多边形的面积公式
答案:2 悬赏:20 手机版
解决时间 2021-11-19 23:48
- 提问者网友:我是女神我骄傲
- 2021-11-19 03:58
正多边形的面积公式
最佳答案
- 五星知识达人网友:千杯敬自由
- 2021-11-19 05:15
1,内角:正n边形的内角和度数为: (n-2)×180°;正n边形的一个内角是 (n-2)×180°÷n.
2,外角:正n边形外角和等于n·180°-(n-2)·180°=360°,所以正n边形的一个 外角为: 360°÷n.
所以正n边形的一个 内角也可以用这个公式: 180°-360°÷n.
3,中心角:任何一个正多边形,都可作一个 外接圆,多边形的中心就是所作外接圆的圆心,
就是这条边所对的弧的圆心角,因此这个角就是360度÷边数。正多边形 中心角:360°÷n
因此可证明,正n边形中, 外角= 中心角= 360°÷n
4,对角线:在一个正多边形中,所有的顶点可以与除了他相邻的两个顶点的其他顶点连线,就
成了相邻的点)个三角形。三角形 内角和:180度,所以把边数减2乘上180度,就是这个正多
边形的内角和 。
5,面积:设正n边形的半径为R,边长为an,中心角为αn,边心距为rn,则αn=360°÷n,
an=2Rsin(180°÷n),rn=Rcos(180°÷n),R^2=r n^2+(an÷2)^2, 周长pn=n×an,面积
Sn=pn×rn÷2。
2,外角:正n边形外角和等于n·180°-(n-2)·180°=360°,所以正n边形的一个 外角为: 360°÷n.
所以正n边形的一个 内角也可以用这个公式: 180°-360°÷n.
3,中心角:任何一个正多边形,都可作一个 外接圆,多边形的中心就是所作外接圆的圆心,
就是这条边所对的弧的圆心角,因此这个角就是360度÷边数。正多边形 中心角:360°÷n
因此可证明,正n边形中, 外角= 中心角= 360°÷n
4,对角线:在一个正多边形中,所有的顶点可以与除了他相邻的两个顶点的其他顶点连线,就
成了相邻的点)个三角形。三角形 内角和:180度,所以把边数减2乘上180度,就是这个正多
边形的内角和 。
5,面积:设正n边形的半径为R,边长为an,中心角为αn,边心距为rn,则αn=360°÷n,
an=2Rsin(180°÷n),rn=Rcos(180°÷n),R^2=r n^2+(an÷2)^2, 周长pn=n×an,面积
Sn=pn×rn÷2。
全部回答
- 1楼网友:雾月
- 2021-11-19 06:44
设正n边形的面积为S,
则,S=(1/2)nR^2*sinα=nr^2tan(α/2)
式中,n--边数,R--三角形的外接圆的半径,r--三角形的内切圆的半径,α--一边所对的圆心角(以度计)
则,S=(1/2)nR^2*sinα=nr^2tan(α/2)
式中,n--边数,R--三角形的外接圆的半径,r--三角形的内切圆的半径,α--一边所对的圆心角(以度计)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯