设A是m×n矩阵,非齐次线性方程组Ax=b有解的充分条件是r(A)=m
为什么是m呢?不懂呀
谢谢你的回答,那我想问r(A)
设A是m×n矩阵,非齐次线性方程组Ax=b有解的充分条件是r(A)=m
答案:1 悬赏:70 手机版
解决时间 2021-02-20 02:59
- 提问者网友:爱唱彩虹
- 2021-02-19 14:03
最佳答案
- 五星知识达人网友:往事隔山水
- 2021-02-19 14:54
注:由于非齐次线性方程组AX=b有解的充分必要条件是 r(A)=r(A,b)
所以只需证明:r(A) = m 时,必有 r(A)=r(A,b).
证明:因为r(A) = m
所以 A 的行向量组的秩 = m
而A是m×n矩阵
所以 A 的行向量组线性无关.
又由线性无关的向量组添加若干个分量仍线性无关 (这是定理)
所以 (A,b) 的行向量组线性无关
所以 (A,b) 的行向量组的秩 = m
所以 r(A,b) = m = r(A).
故非齐次线性方程组AX=b有解 #
注:r(A)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯