已知:在四边形ABCD中,AD∥BC,且AB=DC=5,AC=4,BC=3.
求证:四边形ABCD为平行四边形.
已知:在四边形ABCD中,AD∥BC,且AB=DC=5,AC=4,BC=3.求证:四边形ABCD为平行四边形.
答案:2 悬赏:40 手机版
解决时间 2021-04-06 23:49
- 提问者网友:爱唱彩虹
- 2021-04-05 23:58
最佳答案
- 五星知识达人网友:青尢
- 2019-05-07 11:15
证明:∵AB=5,AC=4,BC=3
∴AB2=AC2+BC2
∴∠BCA=90°
∵AD∥BC
∴∠DAC=∠BCA=90°
∵DC=5,AC=4,
∴AD2=DC2-AC2=9
∴AD=BC=3
∴四边形ABCD为平行四边形.解析分析:已知AB=5,AC=4,BC=3,可证△ABC为直角三角形,由AD∥BC得∠CAD=∠ACB=90°,即△CAD为直角三角形,已知DC=5,AC=4,利用勾股定理可求AD=3,那么两组对边分别相等的四边形是平行四边形.点评:本题考查了勾股定理及其逆定理的运用,平行四边形的判定方法.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
∴AB2=AC2+BC2
∴∠BCA=90°
∵AD∥BC
∴∠DAC=∠BCA=90°
∵DC=5,AC=4,
∴AD2=DC2-AC2=9
∴AD=BC=3
∴四边形ABCD为平行四边形.解析分析:已知AB=5,AC=4,BC=3,可证△ABC为直角三角形,由AD∥BC得∠CAD=∠ACB=90°,即△CAD为直角三角形,已知DC=5,AC=4,利用勾股定理可求AD=3,那么两组对边分别相等的四边形是平行四边形.点评:本题考查了勾股定理及其逆定理的运用,平行四边形的判定方法.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
全部回答
- 1楼网友:我住北渡口
- 2020-12-06 06:35
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯