小红用一张周长为40cm的长方形白纸做一张贺卡,白纸的四周涂上宽为2cm的彩色花边.
(1)求彩色花边的面积;
(2)小红想让中间白色部分的面积大于彩色花边面积,她能做得到吗?请说明理由.
小红用一张周长为40cm的长方形白纸做一张贺卡,白纸的四周涂上宽为2cm的彩色花边.(1)求彩色花边的面积;(2)小红想让中间白色部分的面积大于彩色花边面积,她能做得
答案:2 悬赏:40 手机版
解决时间 2021-12-26 22:13
- 提问者网友:未信
- 2021-12-25 21:25
最佳答案
- 五星知识达人网友:掌灯师
- 2021-12-25 22:11
解:(1)设长方形白纸长为xcm,则宽为(20-x)cm,中间部分的长为(x-4)cm,宽为(20-x-4)cm,
根据题意得
长方形白纸的面积为x(20-x),中间部分的面积为(x-4)(20-x-4)
所以彩色花边的面积为x(20-x)-(x-4)(20-x-4)=64
答:彩色花边的面积为64cm2.
(2)设长方形白纸长为xcm,则宽为(20-x)cm,
中间部分的面积为S=(x-4)(20-x-4)
=-x2+20x-64
=-(x-10)2+36.
无论x取何值,一定有-(x-10)2≤0,所以-(x-10)2+36的最大值为36cm2
而彩色花边的面积为64cm2,所以小红不可能让中间白色部分的面积大于彩色花边面积.解析分析:(1)设原来长方形的长为xcm,则宽为(20-x)cm,则中间部分的长为(x-4)cm,宽为(20-x-4)cm,则花边部分的面积等于原来的面积减去中间部分的面积;
(2)设中间部分的面积为:S求出S与x的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.
根据题意得
长方形白纸的面积为x(20-x),中间部分的面积为(x-4)(20-x-4)
所以彩色花边的面积为x(20-x)-(x-4)(20-x-4)=64
答:彩色花边的面积为64cm2.
(2)设长方形白纸长为xcm,则宽为(20-x)cm,
中间部分的面积为S=(x-4)(20-x-4)
=-x2+20x-64
=-(x-10)2+36.
无论x取何值,一定有-(x-10)2≤0,所以-(x-10)2+36的最大值为36cm2
而彩色花边的面积为64cm2,所以小红不可能让中间白色部分的面积大于彩色花边面积.解析分析:(1)设原来长方形的长为xcm,则宽为(20-x)cm,则中间部分的长为(x-4)cm,宽为(20-x-4)cm,则花边部分的面积等于原来的面积减去中间部分的面积;
(2)设中间部分的面积为:S求出S与x的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.
全部回答
- 1楼网友:忘川信使
- 2021-12-25 23:28
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯