求和 x+2x²+3x³+…+nx^n (x≠0)
答案:2 悬赏:60 手机版
解决时间 2021-03-01 18:41
- 提问者网友:你独家记忆
- 2021-03-01 10:20
求和 x+2x²+3x³+…+nx^n (x≠0)
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-03-01 10:57
你好
令Sn=x+2x²+3x³+…+nx^n (1)
则xSn=x²+2x³+…+(n-1)x^n+nx^(n+1) (2)
(1)-(2)
(1-x)Sn=x+x²+x³+…+x^n -nx^(n+1)
=x(1-x^n)/(1-x) -nx^(n+1)
=[x-x^(n+1)-nx^(n+1)*(1-x)]/(1-x)
=[x-x^(n+1)-x^(n+1)*(n-nx)]/(1-x)
=[x-x^(n+1)*(1+n-nx)]/(1-x)
Sn=[x-x^(n+1)*(1+n-nx)]/(1-x)²
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
令Sn=x+2x²+3x³+…+nx^n (1)
则xSn=x²+2x³+…+(n-1)x^n+nx^(n+1) (2)
(1)-(2)
(1-x)Sn=x+x²+x³+…+x^n -nx^(n+1)
=x(1-x^n)/(1-x) -nx^(n+1)
=[x-x^(n+1)-nx^(n+1)*(1-x)]/(1-x)
=[x-x^(n+1)-x^(n+1)*(n-nx)]/(1-x)
=[x-x^(n+1)*(1+n-nx)]/(1-x)
Sn=[x-x^(n+1)*(1+n-nx)]/(1-x)²
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
全部回答
- 1楼网友:雾月
- 2021-03-01 11:07
解:
错位相减法:
s=x+2x²+3x³+…+nx^n------------------(1)
xs=x²+2x³+…+nx^(n+1)----------------(2)
(1)-(2)得:
(1-x)s=x+x²+x³+…+x^n-nx^(n+1)=[x(1-x^n)/(1-x)]-nx^(n+1)=[x(x^n-1)-(x-1)nx^(n+1)]/(x-1)
=[(n+1)x^(n+1)-x-nx^(n+2)]/(x-1)
s=-[(n+1)x^(n+1)-x-nx^(n+2)]/(x-1)^2=[x+nx^(n+2)-(n+1)x^(n+1)]/(x-1)^2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯