若f(x)=2√3sin(x/3)cos(x/3)减去2sin^2(x/3)若x∈[0,π],求函数f(x)的值域
- 提问者网友:嗝是迷路的屁
- 2021-05-05 07:52
- 五星知识达人网友:毛毛
- 2021-05-05 09:09
F(x)=√3sin(2x/3)-1+1-2sin^2(x/3)
=√3sin(2x/3)-1+cos(2x/3)
=2(√3/2sin(2x/3)+cos(2x/3))-1
=2sin(2x/3+π/6)-1
x∈[0,π],2x/3+π/6∈[π/6,5π/6】
sin(2x/3+π/6】=【1/2,1]
f(x)=[0,1]
- 1楼网友:行路难
- 2021-05-05 12:22
- 2楼网友:神的生死簿
- 2021-05-05 11:55
解:f(x)=2√3sin(x/3)cos(x/3)- 2sin^2(x/3)
=√3sin(2/3)x-[1-cos(2/3)x]
=√3sin(2/3)x-1+cos(2/3)x
=2sin[(2/3)x+π/6]-1
x∈[0,π],则[(2/3)x+π/6]∈[π/6,5π /6]
当x=π/2时,函数取得最大值1
当x=0 时,函数取得最小值0
故函数的值域为[0,1]
- 3楼网友:第四晚心情
- 2021-05-05 10:21
∵f(x)=2√3sin(x/3)cos(x/3)-2sin²(x/3)=√3sin(2x/3)+cos(2x/3)-1=2sin(2x/3+π/6)-1
又∵x∈[0,π]
∴2x/3∈[0,2π/3],则2x/3+π/6∈[π/6,5π/6]
∴sin(2x/3+π/6)∈[1/2,1]
∴f(x)∈[0,1]
- 4楼网友:等灯
- 2021-05-05 10:14
解:f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3)
=2√3sin(x/3)cos(x/3)-[1-2sin^2(x/3)]+1
=√3*sin(2x/3)-cos(2x/3)+1
=1/2*sin(2x/3-π/6)+1,
因为0≤x≤π,则0≤2x/3≤2π/3,
所以-π/6≤2x/3-π/6≤π/2,
所以-1/2≤sin(2x/3-π/6)≤1,
所以3/4≤1/2*sin(2x/3-π/6)+1≤3/2,
即函数f(x)的值域为:{f(x) I 3/4≤f(x)≤3/2}.