化简-2Sn=(3^1+3^2+3^3+················+3^n)-n*3^3n+1
求Sn=?请给出详细步骤,谢谢!
化简-2Sn=(3^1+3^2+3^3+················+3^n)-n*3^3n+1
求Sn=?请给出详细步骤,谢谢!
3^1+3^2+3^3+················+3^n
=3^1*(1-3^n)/(1-3)=3*(3^n-1)/2
-2Sn=(3^1+3^2+3^3+················+3^n)-n*3^3n+1
-2Sn=3*(3^n-1)/2-n*3^3n +1
-2Sn=3^(n+1)/2-n*3^3n-1/2
sn= -3^(n+1)/4+n*3^3n/2+1/4
你所问的等比公式是对的,但是要注意使用时,公式中的n代表的数列的项数,不是题目中的n
-2Sn=(3^1+3^2+3^3+················+3^n)-n*3^3n+1
=3(3^n-1)/(3-1)-n*3^3n+1
所以 Sn=n*3^3n/2-3(3^n-1)/4-1/2