近世代数 扩域
已知√2,i是有理数域Q上的两个代数元,求(Q (√2,i) :Q),即Q (√2,i)在有理数域Q上的扩域次数.
近世代数 扩域已知√2,i是有理数域Q上的两个代数元,求(Q (√2,i) :Q),即Q (√2,i)在有理数域Q上的扩
答案:1 悬赏:40 手机版
解决时间 2021-08-15 01:00
- 提问者网友:星軌
- 2021-08-14 03:34
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-08-14 05:13
首先,不难证明[Q(√2):Q] = 2.
而[Q(√2,i):Q] = [Q(√2,i):Q(√2)]·[Q(√2):Q].
只需求出[Q(√2,i):Q(√2)].
由i不属于Q(√2), [Q(√2,i):Q(√2)] > 1.
又由i是Q(√2)上的2次多项式x²+1的根,故[Q(√2,i):Q(√2)] ≤ 2.
于是只有[Q(√2,i):Q(√2)] = 2.
从而得[Q(√2,i):Q] = 4.
上面用到了两个结论:
若K/F与L/K都是有限扩张,则[L:F] = [L:K]·[K:F].
若F上的代数元a是F[x]中n次多项式的根,则[F(a):F] ≤ n.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯