高等代数习题求解~关于矩阵与多项式理论
已知A为n阶方阵 A^3+4A=E
求证 A^2-2011A 可逆
高等代数习题求解~关于矩阵与多项式理论
答案:1 悬赏:30 手机版
解决时间 2021-08-20 12:22
- 提问者网友:你给我的爱
- 2021-08-20 08:57
最佳答案
- 五星知识达人网友:duile
- 2021-08-20 09:48
(A-2011E)(A^2+2001A+(2011^2+4)E)=A^3+4A-2011*(2011^2+4)E=[1-2011*(2011^2+4)]E,故A-2011E可逆.A(A^2+4E)=E,故A可逆,A^(-1)=A^2+4E,因此A^2-2011A=A(A-2011E)可逆,(A^2-2011A)^(-1)=A^(-1)(A-2011E)^(-1)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯