已知圆C:X^2+Y^2-2X+4Y-4=0.问在圆C上是否存在两点A、B关于直线y=kX-1对称,且以AB为直径的圆经过原点?
已知圆C:X^2+Y^2-2X+4Y-4=0.问在圆C上是否存在两点A、B关于直线y=kX-1对称,且以AB为直径的圆经
答案:1 悬赏:60 手机版
解决时间 2021-08-19 09:47
- 提问者网友:欲望失宠
- 2021-08-18 20:05
最佳答案
- 五星知识达人网友:duile
- 2021-08-18 21:03
圆C:(x-1)²+(y-2)²=9, 圆心C(1,2)
设A(x1,y1),B(x2,y2)
∵直线y=kx-1垂直平分AB
∴直线y=kx-1过圆心,
把C(1,-2)代入,得k=-1
∵AB与直线y=kx-1垂直
∴K(AB)=1,
设AB:y=x+b
联立:
y=x+b
x²+y²-2x+4y-4=0
得:2x²+(2+2b)x+b²+4b-4=0 …………①
x1x2=(b²+4b-4)/2, x1+x2= -b-1
y1y2
=(x1+b)(x2+b)
=x1x2 + b(x1+x2) + b²
=(b²+4b-4)/2 - b² - b + b²
=(b²+2b-4)/2
∵以AB为直径的圆经过原点O
∴向量OA⊥向量OB
∴x1x2+y1y2=0
即(b²+4b-4)/2 + (b²+2b-4)/2 =0
即b²+3b-4=0
b=-4或1
∴AB:y=x-4或y=x+1
把b=-4代入①式中,得
x= (3±√17)/2
∴A((3+√17)/2,(√17-5)/2),B((3-√17)/2,-(√17+5)/2)
把b=1代入①式中,得
x= (-2±√2)/2
∴A((-2+√2)/2,√2/2),B((-2-√2)/2,-√2/2)
综上,A((3+√17)/2,(√17-5)/2),B((3-√17)/2,-(√17+5)/2)
或A((-2+√2)/2,√2/2),B((-2-√2)/2,-√2/2)
∴存在.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯