证明线性无关的一道题,求指教!
设A是n阶方阵,X1,X2,X3是n维列向量,若AX1=X1≠0,AX2=X1+X2,AX3=X2+X3,证明向量组X1,X2,X3线性无关.
证明线性无关的一道题,求指教!
答案:1 悬赏:40 手机版
解决时间 2021-04-13 00:26
- 提问者网友:轻浮
- 2021-04-12 03:27
最佳答案
- 五星知识达人网友:拜訪者
- 2021-04-12 03:47
设k1X1+k2X2+k3X3=0..(1)
A(k1X1+k2X2+k3X3)=k1AX1+k2AX2+k3AX3=k1X1+k2(X1+X2)+k3(X2+X3)=(k1+k2)X1+(k2+k3)X2+k3X3=0.(2)
联立方程(1)与方程(2),两个方程相减,得k2X1+k3X2=0.(3)
A(k2X1+k3X2)=k2AX1+k3AX2=k2X1+k3(X1+X2)=(k2+k3)X1+k3X2=0.(4)
联立方程(3)与方程(4),两个方程相减得k3X1=0,因为X1≠0,所以k3=0.
把k3=0代入(3)得到k2X1=0,因为X1≠0,所以k2=0.
把k2=k3=0代入(1)得到k1X1=0,因为X1≠0,所以k1=0.
所以由(1)只能得到k1=k2=k3=0,所以X1,X2,X3线性无关.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯