永发信息网

二次函数公式定理是啥

答案:2  悬赏:80  手机版
解决时间 2021-02-18 04:01
二次函数公式定理是啥
最佳答案
二次函数是抛物线标准式的平移,所以有对称轴,顶点和渐进方向。
同时二次函数可改写为a(x+k)^2+h的形式,故可知h/a的符号决定了其解的个数。
又求导后得2ax+b,移项即为轴方程。两侧导函数异号,说明单调性发生改变。

都是目测的东西,根本称不上定理。
全部回答
定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: 一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 顶点式:y=a(x-h)²+k或y=a(x+m)²+k (两个式子实质一样,但初中课本上都是第一个式子) 交点式(与x轴):y=a(x-x1)(x-x2) 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大。) 二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 x1,x2=[-b±根号下(b^2-4ac)]/2a(即一元二次方程求根公式) 二次函数的图像 在平面直角坐标系中作出二次函数y=x的平方;的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像 抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点p。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点p,坐标为p ( -b/2a ,(4ac-b²)/4a ) 当-b/2a=0时,p在y轴上;当δ= b²-4ac=0时,p在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 δ= b²-4ac>0时,抛物线与x轴有2个交点。 δ= b²-4ac=0时,抛物线与x轴有1个交点。 _______ δ= b²-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2;/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0) 7.定义域:r 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b²)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax²+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b²)/4a); ⑷δ=b²-4ac, δ>0,图象与x轴交于两点: ([-b-√δ]/2a,0)和([-b+√δ]/2a,0); δ=0,图象与x轴交于一点: (-b/2a,0); δ<0,图象与x轴无交点; ②y=a(x-h)²+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b²)/4a); ③y=a(x-x1)(x-x2)[交点式] a≠0,此时,x1、x2即为函数与x轴的两个交点,将x、y代入即可求出解析式(一般与一元二次方程连用)。 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax^2; y=ax^2;+k y=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 顶点坐标 (0,0) (0,k) (h,0) (h,k) (-b/2a,sqrt[4ac-b^2;]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a). 3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小. 4.抛物线y=ax^2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac>0,图象与x轴交于两点a(x₁,0)和b(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离ab=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-a |(a为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
想减肥今年29,270斤,怎么减啊 ,有什么能让
什么样的液体能在激光照射下出现了非常清晰的
已知某物种的一条染色体上依次排列着A、B、C
俊逸汽车租赁投资商行(恒利路)怎么去啊,有知
年薪5万元包干(包含基本工资,绩效奖金,全
从广州到新疆伊犁的路线怎么走?要多久才到伊
德邦(通华西街)地址在哪,我要去那里办事,
厦门禾祥东离厦门火车站有多远?
衡阳保健浴足怎么去啊,有知道地址的么
红枣连藕什么时候喝最好
康佳电视机型号P215K177的遥控器丢了 配不到
湖北随县人,想在武汉协和医院住院做手术,转
4周岁小儿的身长应为A.90cmB.98cmC.103cmD.10
海洋精灵幼儿园我想知道这个在什么地方
福如东海的东海指的是
推荐资讯
小额定期存款什么存比较实惠,简单??
常州工程职业技术学院大学生媒体服务中心这个
我学习动漫 大专文凭 工作好找么?
[540一(89 +21)]x45简便运算
土建工程钢铁材料能入固定资产
户口落在其他人家,怎么办理和我亲生父母的亲
请写出两个有理数,并把它们相加,使它们的和
下列对孙中山提出的三大政策的表述,正确的是
怎么往监狱里汇款?听别人说可以去邮局汇款,
青稞是什么
某产品件数X与成本Y之间有函数关系Y=300+20X-
2017新版ipad为什么没有b612
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?