设两个向量a=(λ+2,λ^2 - cos^2 α)和b=(m,m/2 +sinα)其中λ,m ,a为实数
设两个向量a=(λ+2,λ^2 - cos^2 α)和b=(m,m/2 +sinα)其中λ,m ,a为实数 ,若a=2b,则λ/m的取值范围是?
设两个向量a=(λ+2,λ^2
答案:1 悬赏:70 手机版
解决时间 2021-08-22 18:32
- 提问者网友:爱了却不能说
- 2021-08-22 10:11
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-08-22 10:29
因为a=2b,故λ+2=2m, λ^2-(cosa)^2=m+2sina,
λ+2=2m,则λ/m=2-2/m.
将λ=2m-2代入λ^2-cos^2α=m+2sinα可得:
4m^2-9m+4=cos^2α+2sinα=-(sinα-1)^2+2的范围[-2,2]
即-2≤4m^2-9m+4≤2,
解得 1/4≤m≤2
则1/2≤1/m≤4 -1≥-2/m≥-8
从而λ/m=2-2/m的范围[-6,1]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯