初一上学期计算类数学题要50道
答案:4 悬赏:30 手机版
解决时间 2021-11-19 11:02
- 提问者网友:情歌越听越心酸
- 2021-11-18 13:23
初一上学期计算类数学题要50道
最佳答案
- 五星知识达人网友:行雁书
- 2021-11-18 13:50
某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正 ,例如:6:15记为-1,10:45记为1等等.依次类推,上午7:45应记为( )
A 3 B -3 C -2.15 D -7.45
下列说法错误的
A 数轴上的原点表示0
B 在数轴上表示-3的点可表示+1的点的距离是2
C 所有的有理数都可以用数轴上的点表示
D 数轴上表示-5又3分之1的点,在原点左边5又3分之1个单位
下列判断中错误的是( )
A 一个正数的绝对值一定是正数
B 一个负数的绝对值一定是正数
C 任何有理数的绝对值都不是负数
D 任何有理数的绝对值都是正数
8下列各组数中,互为相反数的是( )
A|-3分之2|和-3分之2
B|3分之2|和-2分之3
C |-3分之2|和3分之2
D |-3分之2|和2分之3
下列说法中,正确的一个是( )
A 若a>b.则|a|>|b|
B 若 |-a|>|-b|, 则a>b
c 若 a为有理数, 则|a|>0
D 若 a 为有理数 则|a|>0
若|n|=|-12|,则n的值为
A 12 B:-12 C |-12| D 12或-12
填空题
1 (2007年广州)化简|-2| ________
2 (2007年黄冈)计算:-(-2)=______;|-5分之1|=______
3 绝对值在2和5之间的整数有_______
一个物体沿着南北方向运动,如果把向北的方向规定为正,那么走6千米,走-4.5千米,走0千米的意义各是什么?
大于-4 而不大于4的整数有多少个?并用数轴把它们表示出来
在数轴上把下列各数的相反数表示出来,并用"<"将它们连接起来
-5,2,0,-1又2分之1,4.5,-0.5
比较下面大小
-3分之2与-4分之3
-7分之6 与-13分11
已知|a|=2,|b|=5, 且 a>b,求 a .b 的值
(5a+4c+7b)+(5c-3b-6a)
(8xy-x^2+y^2)-(x^2-y^2+8xy)
(2x^2-1/2+3x)-4(x-x^2+1/2)
3x^2-[7x-(4x-3)-2x^2]
252; (-2)3;-7+3-6; (-3)×(-8)×25;
(-616)÷(-28); -100-27; (-1)101; 021;
(-2)4; (-4)2; -32; -23; 3.4×104÷(-5).
课堂练习
审题:运算顺序如何确定?
注意结果中的负号不能丢.
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.
例3 计算:
(1)(-3)×(-5)2; (2)〔(-3)×(-5)〕2;
(3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.
审题:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75.
(2)〔(-3)×(-5)〕2=(15)2=225.
(3)(-3)2-(-6)=9-(-6)=9+6=15.
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180.
注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减.
课堂练习
计算:
(1)-72; (2)(-7)2; (3)-(-7)2;
(7)(-8÷23)-(-8÷2)3.
例4 计算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.
审题:(1)存在哪几级运算?
(2)运算顺序如何确定?
解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50.(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.
课堂练习
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15.
3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号.
课堂练习
计算:
三、小结
教师引导学生一起总结有理数混合运算的规律.
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算.
四、作业
1.计算:
2.计算:
(1)-8+4÷(-2); (2)6-(-12)÷(-3);
(3)3•(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15);
3.计算:
4.计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.
5*.计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)〔(-2)4+(-4)2•(-1)7〕2m•(53+35).
第二份
初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是……………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………………( )
(A) (B) (C) (D)
4.倒数等于它本身的数有………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)无数个
5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)4个
6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( )
(A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b
• • •
7.若|a-2|=2-a,则数a在数轴上的对应点在
(A) 表示数2的点的左侧 (B)表示数2的点的右侧……………( )
(C) 表示数2的点或表示数2的点的左侧
(D)表示数2的点或表示数2的点的左侧
8.计算 的结果是……………………………( )
(A) (B) (C) (D)
9.下列说法正确的是…………………………………………………………( )
(A) 有理数就是正有理数和负有理数(B)最小的有理数是0
(C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式
10.下列说法中错误的是………………………………………………………( )
(A) 任何正整数都是由若干个“1”组成
(B) 在自然数集中,总可以进行的运算是加法、减法、乘法
(C) 任意一个自然数m加上正整数n等于m进行n次加1运算
(D)分数 的特征性质是它与数m的乘积正好等于n
二、 填空题:(每题4分,共32分)
11.-0.2的相反数是 ,倒数是 。
12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。
13.紧接在奇数a后面的三个偶数是 。
14.绝对值不大于4的负整数是 。
15.计算: = 。
16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号)
17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。
18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。
三、 计算(写出计算过程):(每题7分,共28分)
19. 20.
21. (n为正整数)
22.
四、若 。(1)求a、b的值;(本题4分)
(2)求 的值。(本题6分)
第三份
初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁
班级 姓名 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………( )
(A) (B) (C) (D)
4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( )
A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律
5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( )
A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2
6.若|x|=3,|y|=7,则x-y的值是 ( )
A、±4 B、±10 C、-4或-10 D、±4,±10
7.若a×b<0,必有 ( )
A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号
8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( )
A、都是正数 B、绝对值大的那个数正数,另一个是负数
C、都是负数 D、绝对值大的那个数负数,另一个是正数
9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( )
A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米
10.已知有理数 、 在数轴上的位置如图 • • •
所示,那么在①a>0,②-b<0,③a-b>0,
④a+b>0四个关系式中,正确的有 ( )
A、4个 B、3个 C、2个 D、1个
二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分)
11.0.3既不是整数又不是分数,因而它也不是有理数。 ( )
12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( )
13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( )
14.若a是有理数,则-a一定是负数。 ( )
15.零减去一个有理数,仍得这个数。 ( )
16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( )
三、 填空题:(每题3分,共18分)
17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。
18.比较大小: │- │ │- │.(填“>”或“<”号)
19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 。
• • • • • • • • •
20.一个加数是0.1,和是-27.9,另一个加数是 。
21.-9,+6,-3三数的和比它们的绝对值的和小 。
22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。
四、 在下列横线上,直接填写结果:(每题2分,共12分)
23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ;
26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。
五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分)
29.(-6)-(-7)+(-5)-(+9) 30.
31. 32.(-5)×(-3 )-15×1 +〔 -( )×24〕
六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。
⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少?
⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分)
*是乘号。
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
A.-2-3-5-4+3 B.-2+3+5-4+3
C.-2-3+5-4+3 D.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )
A.-38 B.-4 C.4 D.38
(4)若 +(b+3)2=0,则b%
A 3 B -3 C -2.15 D -7.45
下列说法错误的
A 数轴上的原点表示0
B 在数轴上表示-3的点可表示+1的点的距离是2
C 所有的有理数都可以用数轴上的点表示
D 数轴上表示-5又3分之1的点,在原点左边5又3分之1个单位
下列判断中错误的是( )
A 一个正数的绝对值一定是正数
B 一个负数的绝对值一定是正数
C 任何有理数的绝对值都不是负数
D 任何有理数的绝对值都是正数
8下列各组数中,互为相反数的是( )
A|-3分之2|和-3分之2
B|3分之2|和-2分之3
C |-3分之2|和3分之2
D |-3分之2|和2分之3
下列说法中,正确的一个是( )
A 若a>b.则|a|>|b|
B 若 |-a|>|-b|, 则a>b
c 若 a为有理数, 则|a|>0
D 若 a 为有理数 则|a|>0
若|n|=|-12|,则n的值为
A 12 B:-12 C |-12| D 12或-12
填空题
1 (2007年广州)化简|-2| ________
2 (2007年黄冈)计算:-(-2)=______;|-5分之1|=______
3 绝对值在2和5之间的整数有_______
一个物体沿着南北方向运动,如果把向北的方向规定为正,那么走6千米,走-4.5千米,走0千米的意义各是什么?
大于-4 而不大于4的整数有多少个?并用数轴把它们表示出来
在数轴上把下列各数的相反数表示出来,并用"<"将它们连接起来
-5,2,0,-1又2分之1,4.5,-0.5
比较下面大小
-3分之2与-4分之3
-7分之6 与-13分11
已知|a|=2,|b|=5, 且 a>b,求 a .b 的值
(5a+4c+7b)+(5c-3b-6a)
(8xy-x^2+y^2)-(x^2-y^2+8xy)
(2x^2-1/2+3x)-4(x-x^2+1/2)
3x^2-[7x-(4x-3)-2x^2]
252; (-2)3;-7+3-6; (-3)×(-8)×25;
(-616)÷(-28); -100-27; (-1)101; 021;
(-2)4; (-4)2; -32; -23; 3.4×104÷(-5).
课堂练习
审题:运算顺序如何确定?
注意结果中的负号不能丢.
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.
例3 计算:
(1)(-3)×(-5)2; (2)〔(-3)×(-5)〕2;
(3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.
审题:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75.
(2)〔(-3)×(-5)〕2=(15)2=225.
(3)(-3)2-(-6)=9-(-6)=9+6=15.
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180.
注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减.
课堂练习
计算:
(1)-72; (2)(-7)2; (3)-(-7)2;
(7)(-8÷23)-(-8÷2)3.
例4 计算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.
审题:(1)存在哪几级运算?
(2)运算顺序如何确定?
解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50.(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.
课堂练习
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15.
3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号.
课堂练习
计算:
三、小结
教师引导学生一起总结有理数混合运算的规律.
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算.
四、作业
1.计算:
2.计算:
(1)-8+4÷(-2); (2)6-(-12)÷(-3);
(3)3•(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15);
3.计算:
4.计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.
5*.计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)〔(-2)4+(-4)2•(-1)7〕2m•(53+35).
第二份
初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是……………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………………( )
(A) (B) (C) (D)
4.倒数等于它本身的数有………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)无数个
5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)4个
6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( )
(A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b
• • •
7.若|a-2|=2-a,则数a在数轴上的对应点在
(A) 表示数2的点的左侧 (B)表示数2的点的右侧……………( )
(C) 表示数2的点或表示数2的点的左侧
(D)表示数2的点或表示数2的点的左侧
8.计算 的结果是……………………………( )
(A) (B) (C) (D)
9.下列说法正确的是…………………………………………………………( )
(A) 有理数就是正有理数和负有理数(B)最小的有理数是0
(C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式
10.下列说法中错误的是………………………………………………………( )
(A) 任何正整数都是由若干个“1”组成
(B) 在自然数集中,总可以进行的运算是加法、减法、乘法
(C) 任意一个自然数m加上正整数n等于m进行n次加1运算
(D)分数 的特征性质是它与数m的乘积正好等于n
二、 填空题:(每题4分,共32分)
11.-0.2的相反数是 ,倒数是 。
12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。
13.紧接在奇数a后面的三个偶数是 。
14.绝对值不大于4的负整数是 。
15.计算: = 。
16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号)
17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。
18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。
三、 计算(写出计算过程):(每题7分,共28分)
19. 20.
21. (n为正整数)
22.
四、若 。(1)求a、b的值;(本题4分)
(2)求 的值。(本题6分)
第三份
初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁
班级 姓名 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………( )
(A) (B) (C) (D)
4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( )
A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律
5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( )
A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2
6.若|x|=3,|y|=7,则x-y的值是 ( )
A、±4 B、±10 C、-4或-10 D、±4,±10
7.若a×b<0,必有 ( )
A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号
8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( )
A、都是正数 B、绝对值大的那个数正数,另一个是负数
C、都是负数 D、绝对值大的那个数负数,另一个是正数
9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( )
A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米
10.已知有理数 、 在数轴上的位置如图 • • •
所示,那么在①a>0,②-b<0,③a-b>0,
④a+b>0四个关系式中,正确的有 ( )
A、4个 B、3个 C、2个 D、1个
二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分)
11.0.3既不是整数又不是分数,因而它也不是有理数。 ( )
12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( )
13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( )
14.若a是有理数,则-a一定是负数。 ( )
15.零减去一个有理数,仍得这个数。 ( )
16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( )
三、 填空题:(每题3分,共18分)
17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。
18.比较大小: │- │ │- │.(填“>”或“<”号)
19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 。
• • • • • • • • •
20.一个加数是0.1,和是-27.9,另一个加数是 。
21.-9,+6,-3三数的和比它们的绝对值的和小 。
22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。
四、 在下列横线上,直接填写结果:(每题2分,共12分)
23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ;
26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。
五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分)
29.(-6)-(-7)+(-5)-(+9) 30.
31. 32.(-5)×(-3 )-15×1 +〔 -( )×24〕
六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。
⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少?
⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分)
*是乘号。
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
A.-2-3-5-4+3 B.-2+3+5-4+3
C.-2-3+5-4+3 D.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )
A.-38 B.-4 C.4 D.38
(4)若 +(b+3)2=0,则b%
全部回答
- 1楼网友:迟山
- 2021-11-18 16:18
数学符号太多,不数学运算中经常使用符号,如+,-,×,÷,=,>,<,∽,(),√?等,能找得太全,也不是那么容易的,这里只找了一些常用的。加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。另一乘号“·”是数学家赫锐奥特首创的。除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比。也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。十七世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用。在(小)于号“>”,“<”,1631年为英国数学家赫锐奥特创用。相似号“∽”和全等号“≌”是数学家莱布尼兹创用。括号“( )”,1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号。平方根号“√?”,1220年意大利数学家菲波那契使用R作为平方根号。十七世纪法国数学家笛卡尔在他的《几何学》一书中第一次用“√?”表示根号。“√?”是由拉丁文root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号。
数学符号一般有以下几种:
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
数学符号一般有以下几种:
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
- 2楼网友:神的生死簿
- 2021-11-18 15:58
某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正 ,例如:6:15记为-1,10:45记为1等等.依次类推,上午7:45应记为( )
A 3 B -3 C -2.15 D -7.45
A 3 B -3 C -2.15 D -7.45
- 3楼网友:我住北渡口
- 2021-11-18 14:46
这个不是很多的,你实在不成抄数学书,练习册上的题,老师不会仔细看的,50道呢!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯