如图,在△ABC中,AM是中线,AE为高线,证明:AB^2+AC^2=2(AM^2+BM^2)
如图,在△ABC中,AM是中线,AE为高线,证明:AB^2+AC^2=2(AM^2+BM^2)
答案:1 悬赏:50 手机版
解决时间 2021-01-04 06:14
- 提问者网友:斑駁影
- 2021-01-03 19:40
最佳答案
- 五星知识达人网友:山河有幸埋战骨
- 2021-01-03 20:03
证明:
在直角三角形ABD中,由勾股定理得,
AB^2=BD^2+AD^2,(1)
在直角三角形ACD中,由勾股定理得,
AC^2=CD^2+AD^2,(2)
(1)+(2),得,
AB^2+AC^2
=BD^2+AD^2+CD^2+AD^2
=(BM+DM)^2+AD^2+(CM-DM)^2+AD^2
=BM^2+2BM*DM+DM^2+AD^2+CM^2-2CM*DM+DM^2+AD^2
因为BM=CM,
所以AB^2+AC^2
=2BM^2+2DM^2+2AD^2
=2BM^2+2(DM^2+AD^2)
在在直角三角形ADM中,由勾股定理得,
AM^2=DM^2+AD^2,
所以AB^2+AC^2=2(AM^2+BM^2)
PS:我画的图D在M和C点之间,若不是,也可仿照此法
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯