数学归纳法的原理是什么?
答案:3 悬赏:60 手机版
解决时间 2021-03-22 07:21
- 提问者网友:我没有何以琛的痴心不悔
- 2021-03-21 20:13
数学归纳法的原理是什么?
最佳答案
- 五星知识达人网友:低血压的长颈鹿
- 2021-03-21 21:18
递推的基础:证明当n=1时表达式成立。
递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立。
这种方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。
或许想成多米诺效应更容易理解一些,如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定: 第一张骨牌将要倒下,只要某一个骨牌倒了,与之相邻的下一个骨牌也要倒,那么你就可以推断所有的的骨牌都将要倒。 这样就确定出一种递推关系,只要满足两个条件就会导致所有骨牌全都倒下:
(1)第一块骨牌倒下;
(2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。
这样,无论有多少骨牌,只要保证(1)(2)成立,就会全都倒下。
递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立。
这种方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。
或许想成多米诺效应更容易理解一些,如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定: 第一张骨牌将要倒下,只要某一个骨牌倒了,与之相邻的下一个骨牌也要倒,那么你就可以推断所有的的骨牌都将要倒。 这样就确定出一种递推关系,只要满足两个条件就会导致所有骨牌全都倒下:
(1)第一块骨牌倒下;
(2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。
这样,无论有多少骨牌,只要保证(1)(2)成立,就会全都倒下。
全部回答
- 1楼网友:我住北渡口
- 2021-03-21 23:03
第一数学归纳法可以概括为以下三步: (1)归纳奠基:证明n=1时命题成立; (2)归纳假设:假设n=k时命题成立; (3)归纳递推:由归纳假设推出n=k+1时命题也成立.
第二数学归纳法原理是设有一个与自然数n有关的命题,如果:
(1)当n=1时,命题成立;
(2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。
那么,命题对于一切自然数n来说都成立。
- 2楼网友:老鼠爱大米
- 2021-03-21 21:31
a^3-7a+6
=(a^3-a)-6(a-1)
=a(a+1)(a-1)-6(a-1)
=(a-1)(a^2+a-6)
=(a-1)(a-2)(a+3)
注:一般高于2次的因式,可以先用数字验证一下,比分说代入1,如果原式为0,说明方程
f(x)=0有解1,则f(x)必然包含因式x-1,所以我们就可以直接提出x-1啦
比分这个因式 a^3-7a+6 将a=1代入,得到a^3-7a+6=1-7+6=0,所以它就包含因子a-1啦
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯