a的n次方±b的n次方,怎么进行因式分解
答案:1 悬赏:60 手机版
解决时间 2021-01-19 03:55
- 提问者网友:你挡着我发光了
- 2021-01-18 09:09
a的n次方±b的n次方,怎么进行因式分解
最佳答案
- 五星知识达人网友:一把行者刀
- 2021-01-18 09:48
解:①n为奇数时,a^n-b^n=0由唯一解a=b,a^n-b^n只能分解为两个因式相乘
a^n-b^n=[a^n-a^(n-1)b]+[a^(n-1)b-a^(n-2)b²]+…+[ab^(n-1)-b^n]=(a-b)[a^(n-1)+a^(n-2)b+…b^(n-1)]
a^n+b^n=a^n-(-b)^n同理即可。
②n为偶数时,a^n-b^n先使用平方差公式,指数变为奇数时,按①分解因式即可
n是4的倍数时,a^n+b^n=[a^(n/2)]²+[b^(n/2]²+2a^(n/2)b^(n/2)-2a^(n/2)b^(n/2)=[a^(n/2)+b^(n/2)]²-
[√2a^(n/4)b^(n/4)]²平方差公式分解即可。此外,a^n+b^n²实数范围无法分解,
a^n-b^n=[a^n-a^(n-1)b]+[a^(n-1)b-a^(n-2)b²]+…+[ab^(n-1)-b^n]=(a-b)[a^(n-1)+a^(n-2)b+…b^(n-1)]
a^n+b^n=a^n-(-b)^n同理即可。
②n为偶数时,a^n-b^n先使用平方差公式,指数变为奇数时,按①分解因式即可
n是4的倍数时,a^n+b^n=[a^(n/2)]²+[b^(n/2]²+2a^(n/2)b^(n/2)-2a^(n/2)b^(n/2)=[a^(n/2)+b^(n/2)]²-
[√2a^(n/4)b^(n/4)]²平方差公式分解即可。此外,a^n+b^n²实数范围无法分解,
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯