某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场
答案:2 悬赏:20 手机版
解决时间 2021-01-04 18:41
- 提问者网友:美人性情
- 2021-01-03 21:25
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-01-03 22:04
解:设每天利润为w元,每件衬衫降价x元,
根据题意得w=(40-x)(20+2x)=-2x2+60x+800=-2(x-15)2+1250
(1)当w=1200时,-2x2+60x+800=1200,
解之得x1=10,x2=20.
根据题意要尽快减少库存,所以应降价20元.
答:每件衬衫应降价20元.
(2)解:商场每天盈利(40-x)(20+2x)
=-2(x-15)2+1250.
当x=15元时,商场盈利最多,共1250元.
答:每件衬衫降价15元时,商场平均每天盈利最多.解析分析:(1)总利润=每件利润×销售量.设每天利润为w元,每件衬衫应降价x元,据题意可得利润表达式,再求当w=1200时x的值;
(2)根据函数关系式,运用函数的性质求最值.点评:本题重在考查根据题意写出利润的表达式是此题的关键.
根据题意得w=(40-x)(20+2x)=-2x2+60x+800=-2(x-15)2+1250
(1)当w=1200时,-2x2+60x+800=1200,
解之得x1=10,x2=20.
根据题意要尽快减少库存,所以应降价20元.
答:每件衬衫应降价20元.
(2)解:商场每天盈利(40-x)(20+2x)
=-2(x-15)2+1250.
当x=15元时,商场盈利最多,共1250元.
答:每件衬衫降价15元时,商场平均每天盈利最多.解析分析:(1)总利润=每件利润×销售量.设每天利润为w元,每件衬衫应降价x元,据题意可得利润表达式,再求当w=1200时x的值;
(2)根据函数关系式,运用函数的性质求最值.点评:本题重在考查根据题意写出利润的表达式是此题的关键.
全部回答
- 1楼网友:十年萤火照君眠
- 2021-01-03 22:29
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯