如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF?DE;④∠BDF+∠FE
答案:2 悬赏:20 手机版
解决时间 2021-03-20 10:42
- 提问者网友:缘字诀
- 2021-03-20 07:22
如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF?DE;④∠BDF+∠FEC=2∠BAC,正确的个数是A.1B.2C.3D.4
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-01-14 19:49
B解析分析:根据对折的性质可得AE=EF,∠DAF=∠DFA,∠EAF=∠AFE,∠BAC=∠DFE,据此和已知条件判断图中的相等关系.解答:①由题意得AE=EF,BF=FC,但并不能说明AE=EC,∴不能说明EF是△ABC的中位线,故①错;
②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;
③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;
④∠BDF=∠BAF+∠DFA,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.
正确的有两个,故选B.点评:翻折前后对应线段相等,对应角相等.
②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;
③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;
④∠BDF=∠BAF+∠DFA,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.
正确的有两个,故选B.点评:翻折前后对应线段相等,对应角相等.
全部回答
- 1楼网友:孤独的牧羊人
- 2020-02-24 07:40
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯