例题:用平方差公式计算:(x+1)(x-1)(x^2+1)(x^4+1)(x^8+1)
解:原式=(x^2-1)(x^2+1)(x^4+1)(x^8+1)
=(x^4-1)(x^4+1)(x^8+1)
=(x^8-1)(x^8+1)
=x^16-1
问题:根据例题的解题方法,计算(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^64+1).
例题:用平方差公式计算:(x+1)(x-1)(x^2+1)(x^4+1)(x^8+1)
解:原式=(x^2-1)(x^2+1)(x^4+1)(x^8+1)
=(x^4-1)(x^4+1)(x^8+1)
=(x^8-1)(x^8+1)
=x^16-1
问题:根据例题的解题方法,计算(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^64+1).
(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^64+1).
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)...(2^64+1).
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)...(2^64+1).
=(2^4-1)(2^4+1)(2^8+1)...(2^64+1).
=(2^64-1)(2^64+1)
=2^128-1
解: 原式=(2+1)(2-1)(2^2+1)(2^4+1)…(2^64+1)
=(2^2-1)(2^2+1)(2^4+1)…(2^64+1)
=2^108-1