如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为_______
答案:2 悬赏:10 手机版
解决时间 2021-01-03 05:05
- 提问者网友:夢醒日落
- 2021-01-02 20:26
如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为________.
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-01-02 20:35
n(n+1)解析分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形“扩展”而来的多边形的边数为n(n+1).解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,
②正四边形“扩展”而来的多边形的边数是20=4×5,
③正五边形“扩展”而来的多边形的边数为30=5×6,
④正六边形“扩展”而来的多边形的边数为42=6×7,
∴正n边形“扩展”而来的多边形的边数为n(n+1).点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).
②正四边形“扩展”而来的多边形的边数是20=4×5,
③正五边形“扩展”而来的多边形的边数为30=5×6,
④正六边形“扩展”而来的多边形的边数为42=6×7,
∴正n边形“扩展”而来的多边形的边数为n(n+1).点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).
全部回答
- 1楼网友:过活
- 2021-01-02 21:22
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯