数列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想数列{an}的
答案:1 悬赏:50 手机版
解决时间 2021-06-09 13:03
- 提问者网友:你挡着我发光了
- 2021-06-09 00:47
数列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想数列{an}的
最佳答案
- 五星知识达人网友:千杯敬自由
- 2021-06-09 01:00
数列{a(n)}中,已知s(n) = a(n) - 1/s(n) - 2,①:求出s(1),s(2),s(3),s(4),②:猜想数列{a(n)}的前n项和s(n)的公式,并加以证明s(1) = a(1) = a(1) - 1/s(1) - 2,0 = -1/s(1) - 2,s(1) = -1/2.s(2) = s(1) + a(2) = -1/2 + a(2) = a(2) - 1/s(2) - 2,-1/2 = -1/s(2) - 2,s(2) = -2/3.s(3) = s(2) + a(3) = -2/3 + a(3) = a(3) - 1/s(3) - 2,-2/3 = -1/s(3) -2,s(3) = -3/4.s(4) = s(3) + a(4) = -3/4 + a(4) = a(4) - 1/s(4) - 2,-3/4 = -1/s(4) -2,s(4) = -4/5.① s(1) = -1/2,s(2) = -2/3,s(3) = -3/4,s(4) = -4/5.② 猜想数列{a(n)}的前n项和s(n) = -n/(n+1)证明,(1)n = 1,s(1) = -1/2.符合猜想.(2)假设n = k时,有 s(k) = -k/(k+1),则n = k+1时,有s(k+1) = s(k) + a(k+1) = -k/(k+1) + a(k+1) = a(k+1) - 1/s(k+1) - 2,-k/(k+1) = -1/s(k+1) - 2,s(k+1) = -(k+1)/(k+2).符合猜想.因此,由归纳法证得,数列{a(n)}的前n项和s(n) = -n/(n+1),n = 1,2,...的结论成立.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯