求下列极限:
答案:2 悬赏:10 手机版
解决时间 2021-11-11 16:08
- 提问者网友:沉默菋噵
- 2021-11-11 10:16
求下列极限:
最佳答案
- 五星知识达人网友:青尢
- 2021-11-11 10:24
(1)
x->0
tanx ~ x +(1/3)x^3
sinx ~ x-(1/6)x^3
tanx - sinx ~ (1/2)x^2
√(2+x^2)= √2.√[1+ (1/2)x^2] ~ √2.(1+ (1/4)x^2)
e^(x^3) -1 ~ x^3
√(2+x^2).[e^(x^3) -1] ~ √2.x^3
lim(x->0) (tanx - sinx)/{ √(2+x^2).[e^(x^3) -1] }
=lim(x->0) (1/2)x^3/{ √2.x^3 }
=(1/4)√2
(2)
x->0
cos(x^2) ~ 1- (1/2)x^4
ln(cos(x^2)) ~ ln(1- (1/2)x^4) ~ - (1/2)x^4
e^(sinx) ~ e^x ~ 1+x
(e^(sinx) -1)x^3 ~ x^4
lim(x->0) ln(cos(x^2)) /[(e^(sinx) -1)x^3]
=lim(x->0) - (1/2)x^4 / x^4
=-1/2
x->0
tanx ~ x +(1/3)x^3
sinx ~ x-(1/6)x^3
tanx - sinx ~ (1/2)x^2
√(2+x^2)= √2.√[1+ (1/2)x^2] ~ √2.(1+ (1/4)x^2)
e^(x^3) -1 ~ x^3
√(2+x^2).[e^(x^3) -1] ~ √2.x^3
lim(x->0) (tanx - sinx)/{ √(2+x^2).[e^(x^3) -1] }
=lim(x->0) (1/2)x^3/{ √2.x^3 }
=(1/4)√2
(2)
x->0
cos(x^2) ~ 1- (1/2)x^4
ln(cos(x^2)) ~ ln(1- (1/2)x^4) ~ - (1/2)x^4
e^(sinx) ~ e^x ~ 1+x
(e^(sinx) -1)x^3 ~ x^4
lim(x->0) ln(cos(x^2)) /[(e^(sinx) -1)x^3]
=lim(x->0) - (1/2)x^4 / x^4
=-1/2
全部回答
- 1楼网友:愁杀梦里人
- 2021-11-11 11:54
如图
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯