一个直角三角形的两条直角边分别长为(3-√2)cm和(3+√2)cm,求这个三角形的面积和周长,
一个直角三角形的两条直角边分别长为(3-√2)cm和(3+√2)cm,求这个三角形的面积和周长,
答案:1 悬赏:70 手机版
解决时间 2021-08-23 09:42
- 提问者网友:几叶到寒
- 2021-08-22 12:52
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-08-22 13:46
由勾股定理得:
斜边=根号【(3-√2)²+(3+√2)²】=√22厘米
周长=(3-√2)+(3+√2)+√22=6+√22厘米
面积=(3-√2)×(3+√2)×1/2=(9-2)×1/2=3.5平方厘米
再问: 斜边=根号【(3-√2)²+(3+√2)²】=√18厘米
? 你算错了?
再答: 没有啊 (3-√2)² =3²-6√2+(√2)²=9-6√2+2=11-6√2 (3+√2)²=3²+6√2+(√2)²=9+6√2+2=11+6√2
再问: 斜边=根号【(3-√2)²+(3+√2)²】=√18厘米。
这个·我怎么算到是18CM
再答: 你可能公式用错了: (a+b)²=a²+2ab+b² 我估计第一个的+2,你写成 -2了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯