设a1a2a3是一个向量组的极大无关组,且b1=a1+a2+a3,b2=a1+a2+2a3,b3=a1+2a2+3a3,证
b1b2b3也是该向量组的极大无关组
设a1a2a3是一个向量组的极大无关组,且b1=a1+a2+a3,b2=a1+a2+2a3,b3=a1+2a2+3a3,
答案:1 悬赏:60 手机版
解决时间 2021-06-09 19:12
- 提问者网友:夢醒日落
- 2021-06-09 02:29
最佳答案
- 五星知识达人网友:封刀令
- 2021-06-09 03:55
由已知,a1,a2,a3 是向量组的基向量,该向量组的秩为 3 .
由于 a1=b1+b2-b3 ,a2=b1+b3-2b2 ,a3=b2-b1 ,
因此 a1、a2、a3 可以用向量 b1、b2、b3 线性表出,
所以 b1、b2、b3 也是该向量组的基向量,是极大线性无关组 .
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯